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Preface

This dissertation presents new ideas in the design of program refinement
tools. Program refinement is a formal method for stepwise program devel-
opment. Tool support for program refinement can increase our confidence in
the soundness of our refinement theory and in the ultimate correctness of our
program derivations. A refinement tool must be expressive enough to repre-
sent all of the commands in our refinement language, must give ready access
to the standard results in classical mathematics, should support the process
of our refinement methodology, and should facilitate the valid realisation of
completely developed programs. This dissertation presents new ideas and
techniques which endeavour to address these requirements.

Several refinement tools use a style of reasoning called window inference.
Window inference supports the transformation of terms under preorder re-
lations, such as procedural refinement. We describe a generalised version of
window inference which works with arbitrary composable relations, and thus
allows the transformation of programs using data-refinement. Our flexible
window inference can also support more interaction schemes in the develop-
ment of a proof by allowing multiple windows to open simultaneously on the
top-level term.

We then describe a new representation for the semantics of a program
refinement language. Our theory is mechanised in Isabelle/ZF, a theorem
prover for untyped set theory. This very expressive logic allows us to repre-
sent a wider variety of commands than earlier similar refinement tools. We
treat program states as dependently typed functions from variable names to
values. We show how to encode contextual information in the syntax of our
language so as to support our refinement methodology. The uniform and
explicit nature of our representation increases the perspicuity of our defi-
nitions and theorems. We use several devices to ameliorate the additional
notational burden which would otherwise accompany our expressive frame-
work. Finally, we demonstrate the utility of our mechanised theory in a case
study: the implementation of a propositional tautology checker.
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Chapter 1

Introduction

This dissertation presents new techniques for use in the design of program
refinement tools. Program refinement is a formal method for stepwise pro-
gram development. Formal methods is a study of design in computer sci-
ence, using mathematically described theories to justify the correctness of
implementations relative to their specifications. The design-time analysis of
predicted behaviour is central to the design of safety-critical computer sys-
tems [79]. Calculi for program refinement were developed by Back [7], Morris
[75, 77] and Morgan [71, 70] as extensions of Dijkstra’s guarded command
language [31]. A refinement language is a wide-spectrum language which
encompasses both abstract specification statements and concrete imperative
programming statements. Procedural refinement is a way of incrementally
transforming specification statements into corresponding correct implemen-
tations. Data-refinement is a special kind of refinement step which allows the
representation of local program variables to be changed so that more efficient
implementations can be given [48, 78, 14].

Tool support for program refinement can increase our confidence in the
soundness of our refinement theory and ultimately in the correctness of our
program derivations. A refinement tool must be expressive enough to repre-
sent, all of the statements in our refinement language, must give ready access
to the standard results in classical mathematics, should support the process
of our refinement methodology, and should facilitate the valid realisation
of completely developed programs [26, 25]. This dissertation presents new
ideas and techniques which endeavour to address these requirements. Our
tool is based on a theorem prover supporting classical mathematics, and is
expressive enough to deal with the difficult representational demands of the
refinement calculus. We support our refinement methodology by choosing
a representation of our language which allows the contextual refinement of
recursion blocks and procedures, and by using an inference technique that



allows the data-refinement of programs. The uniform and explicit nature of
our representation of states should facilitate the translation of our language
to other common styles of semantic representation.

Our work is performed in the theorem prover Isabelle/ZF, which mecha-
nises an expressive untyped set theory underlying a large collection of stan-
dard results in classical mathematics [85]. We use this expressive logic to rep-
resent our refinement language. Representing a semantics for the refinement
calculus is more challenging than representing the semantics of an ordinary
programming language. A program refinement language contains abstract
specification statements, and may introduce local blocks whose variables have
arbitrarily complex abstract types. We use dependently typed functions in
I[sabelle/ZF to represent program states as an underspecified map from vari-
able names to their values. This treatment of states allows us to give a
uniform treatment of variable assignment statements, framed specification
statements, local blocks, and procedure parameterisation. Our uniform logic
for representing the refinement theory and its assertion language allows us
to embed meta-level contextual information within statements in our lan-
guage. This helps us to support a stepwise refinement methodology for the
development of recursion blocks and procedures.

Using an untyped set-theory in preference to an implicitly typed frame-
work provides an extra overhead in formalisation. However, we use several
devices to ameliorate the additional notational burden this expressive frame-
work would otherwise entail. The definitions of our statements extract typ-
ing information from their subcomponents, and we use facilities in Isabelle’s
higher-order meta-logic to hide most of the remaining explicit typing in our
semantic representation.

Several existing refinement tools [42, 102, 29] use a style of reasoning
called window inference [90, 43]. Window inference supports the transforma-
tion of terms under preorder relations, such as procedural refinement. We
describe a generalised version of window inference which works with arbitrary
composable relations, and thus allows the transformation of programs using
data-refinement. Our flexible window inference can also support more inter-
action schemes in the development of a proof by allowing multiple windows
to open simultaneously on the top-level term.

We demonstrate the utility of our mechanised theory in a case study:
the implementation of a propositional tautology checker. This involves the
refinement of an initial specification to a program using decision trees, and its
subsequent data-refinement to more restricted classes of trees, and then to a
final program using reduced ordered negation trees. The program we develop
uses recursive procedures with recursive calls from within local blocks with
various types.



The remainder of this introduction will examine the nature of program
refinement and formal methods in computer science. We will argue that
formal methods is neither a scientific nor an engineering discipline, but is
rather a study of design, sharing concerns with both science and engineering.
We will examine the role of representation and mechanised tool support for
formal methods in general, and program refinement in particular. Finally,
we will describe the Isabelle theorem prover, and present an outline of this
dissertation.

1.1 Science, Engineering, and the Study of
Design

Computer science is concerned with the nature of computation, ultimately
realised as a physical process. Computer science includes scientific and engi-
neering work, but also includes work, such as that in formal methods, which
is a different kind of investigative activity. Formal methods is concerned
with the design and analysis of computer systems, but abstracts away from
immediate concerns about physical realisation.

1.1.1 Science and Engineering

Science can be characterised as the investigation of the world through the use
of the scientific method. Scientists create general theories about the nature of
the world, from which they make specific testable predictions. Theories are
evaluated by investigating the correspondence between their predictions and
the observations of specific physical phenomena. (See Figure 1.1, diagram
A.) This is a fairly abstract view of science which is not inconsistent with
the philosophies of Popper [87] or Kuhn [58]. We can similarly characterise
engineering as the construction of artifacts using an engineering method.
Engineers take quantifiable requirements specifications for the performance
of artifacts. These specifications inform the design of an artifact, which after
construction is evaluated by testing its performance against its requirements
specifications. (See Figure 1.1 diagram B.)

These scientific and engineering activities can be both placed within a
space depicted in Figure 1.2. This graph shows three dimensions:

Formal vs. Real
Formal things are syntactic or mathematical, whereas Real things are
causal entities or events.



Theory Reality Design Artifact

... models... Y ... models...
inform
entails yields yields y
A .oof . for
Predictions Phenomena Specification Performance,
A. Science B. Engineering

Figure 1.1: Science and Engineering

Formal things include a scientist’s theories and consequent predictions,
and an engineer’s specifications, leading to designs for artifacts. Real
things include a scientist’s investigated reality and the observations of
specific phenomena, and also an engineer’s constructed artifacts and
their performance in test and use.

Analytic vs. Synthetic
Synthesis combines pieces into a whole, whereas analysis takes apart
wholes into pieces. We call synthesised things ‘synthetic’, and analysed
things ‘analytic’. (Our use of these terms is not the same as Kant’s
[53].) Formal synthetic things are related to formal analytic things by
mathematical consequence. Real synthetic things are related to real
analytic things by causation.

Analytic things include a scientist’s predictions consequent upon their
theories, and observations of specific phenomena in the real world, and
also include an engineer’s listed specifications for evaluating the perfor-
mance of artifacts. Synthetic things include a scientist’s encompassing
theories of a universal reality, and an engineer’s complete designs for
entire artifacts.

Description vs. Prescription
On the descriptive plane, if there is a discrepancy between the formal
and the real, the formal is wrong, whereas on the prescriptive plane,
the converse holds. Correspondences between formal and real planes
must be preserved at the synthetic and analytic levels.

Scientists investigate the correspondence between their theories and
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reality, which they probe through an investigation of the correspon-
dence between the predictions of the theory and observations of events
related to those predictions. Unexpected discrepancies between pre-
dictions and observations may reduce support for the validity of the
scientific theory.

Engineers produce designs prescribing the construction of artifacts,
which they then test by investigating the correspondence between the
performance of the artifact and its given specifications. If there is an
unexpected discrepancy between performance of the artifact and its
specifications, the artifact has failed its test, which may indicate that
the design is bad in some way.

Design Artifact
Formal
Vs,
| Real
I %;iamy
| Descriptive
vs.
| Prescriptive
|
|

=7 synunetic

Vs,
Analytic

Figure 1.2: Science and Engineering Cube

These dimensions are not necessarily orthogonal—a separation between
nodes does not necessarily imply a commitment to their ontological unrelat-
edness. For example, physical phenomena, artifacts and their performance
are all a part of reality. Nonetheless, the distinctions we propose are useful for
expository purposes. In this dissertation we consider the refinement calculus,
which uses a wide-spectrum language operating over a continuum between
abstract specifications and fully developed programs. Though, from a math-
ematical perspective, there is no clear difference between specifications and
concrete designs, they do have very different roles in development.



The distinction between science and engineering is also not as straight-
forward as it might seem—engineers use scientific theories as a language for
representing designs, and also perform experiments during the design and
construction of artifacts. Dually, scientists construct tools and apparatus
for testing their theories. Nonetheless, there is an over-arching difference of
intention between science and engineering. Brooks, in his ACM Allen Newell
award lecture [22, p62], says of this teleological contrast:

That distinction [between scientific and engineering disciplines|
lies not so much in the activities of the practitioners as in their
purposes. |...] ...the scientist builds in order to study; the engineer
studies in order to build.

1.1.2 Applied Computer Science

The popular view of computer scientists is that they are primarily interested
in the design and construction of artifacts (programs or chips). This view is
a largely accurate view of applied computer science. Juris Hartmanis, in his
Turing award lecture [45, p40], says:

Systems building, hardware and software, is the defining char-
acteristic of applied and/or experimental work in computer sci-
ence...

This suggests that applied computer science is an engineering discipline.
However, there are two ways in which we might consider parts of applied
computer science to be a scientific, descriptive activity. First, we must bear
in mind the teleological subtlety discussed above: computers systems may
be constructed to serve as tools in some larger descriptive investigation of
computer science.

Secondly, just because something has been constructed, it isn’t necessarily
the case that it has been designed for the purpose for which it is used. Many
computer systems have evolved over time through informal social processes.
These systems nonetheless need to be understood, rather than simply dis-
missed as incorrect relative to some idealised specification. This is a position
outlined by Milner [65, p247]:

[thirty years ago| the main concern was to prescribe the be-
haviour of single computers or their single programs. Now that
computers form just parts of larger systems, there is increasing
concern to describe the flow of information and the interaction
among the components of those larger systems.



Regarding parts of applied computer science as a science in this sense is
perhaps a small departure from the normal understanding of science as an
investigation of the natural world. However, applied computer science in this
sense is still an investigation of the physical world. Milner [65, p250] says:

To the extent that the phenomena of computing and commu-
nication are man-made, we have a substantial new ‘science of the
artificial’ as Herbert Simon (1980) has recognised.

So although much of applied computer science is concerned with engi-
neering practice, parts of it can be seen to be scientific: when computers are
created as tools for the purpose of investigating some phenomena, or when
extant computer systems are descriptively investigated, we can say that ap-
plied computer science is a scientific activity. What then about theoretical
computer science?

1.1.3 Theoretical Computer Science

Theoretical computer scientists create and investigate mathematical models
of idealised computation, and algorithms based on these models. Though
this is a mostly mathematical investigation, it is not a completely contingent
one. The standard notion of computation is to some extent limited by the
Church-Turing thesis [98], which holds that all sufficiently powerful models of
computation are essentially equally powerful. The limits of information the-
ory [92] also pose constraints on investigations within theoretical computer
science. Hartmanis [45, p41] sums up this view as follows:

...engineering in our field has different characteristics than the
more classical practice of engineering. Many of the engineering
problems in computer science are not constrained by physical
laws.

The standard notion of computation brings with it constraints on com-
plexity and computability of problems and algorithms. Theoretical computer
science is an applied mathematics which investigates these issues.

1.1.4 Formal Methods and the Study of Design

Formal methods is usually seen as a branch of theoretical computer sci-
ence, concerned with investigating formal properties of computer systems,
languages and programs. We have said that computer science contains en-
gineering and scientific activities. However, parts of computer science, es-
pecially much work in formal methods, can more usefully be considered a
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‘study of design’’ dissimilar to normal science or engineering. The view of
Hartmanis [45, p41] is that:

...computer science is concentrating more on the how than the
what, which is more the focal point of physical sciences.

Similarly, Milner’s position [64, p5] is that:

...for a physical scientist an experiment will reinforce (or un-
dermine) his conceptual grasp of what is true; for a computer
scientist, the experiment will reinforce (or undermine) his con-
ceptual grasp of how to design.

Formal methods is based on mathematical modelling, but unlike mathe-
matics, it is ultimately concerned with issues related to system design. For-
mal methods researchers investigate ways in which results based on math-
ematical models of computation can be used to improve the design process
for computer systems. This is like working on the ‘formal’ face of the science
and engineering cube, as depicted in Figure 1.3. There, we indicate various

Synthetic
1. Represent y
4. Inform
Descriptive Prescriptive

3. Entail

4

2. Demonstrate
Predictions Specification

Analytic

Figure 1.3: Formal Methods

kinds of formal methods research, including:

1. ways in which theoretical models can represent programs and designs
for computer systems;

'Simon calls something like this a ‘science’ of design [94].



2. how predictions derived from these models can be used to demonstrate
the correctness of designs (program verification is an example of this);

3. discovering classes of theoretical results which are useful when demon-
strating the correctness of a system; and

4. how formal specifications can be used to inform the design and imple-
mentation of correct computer systems (program refinement includes
examples of this kind of research).

Results in science and engineering are evaluated by investigating corre-
spondences between the formal and real planes. How do we evaluate results
in formal methods? Hartmanis [45, p40] considers that:

In computer science, results of theory are judged by the in-
sights they reveal about the mathematical nature of various mod-
els of computing and/or by their utility to the practice of com-
puting and their ease of applicability.

Researchers in formal methods evaluate the fitness of models to support a
given design methodology, and also the utility of design processes to support
design under a given theoretical model.

Fetzer [32] criticises program verification as being impossible in principle.
His position is that as all work in program verification is done at a formal
level, no correspondence with computation in the real world is ever estab-
lished, and hence program verification will never establish that real-world
programs will function correctly. In one sense Fetzer’s criticisms are valid:
program verification does just work with formal entities, and not with real-
world programs or computers. However, this is not a problem if other parts
of computer science deal with the correspondence between the formal and
real in a suitable way. The ‘very idea of program verification’ is based on
an understanding that an engineer is taking care (to an appropriate level
of detail) of the prescriptive correspondence between the program verifier’s
model of computation and some physical computing device.

1.2 Representation and Mechanisation

Formal methods uses logics and mathematics to represent systems or lan-
guages.? Formal methods researchers are mostly interested in representing

2Languages, systems, machines and logics are all potentially representing and repre-
sentable, so for our purposes are essentially equivalent. We will usually say ‘logic’ for the
representing thing, and ‘language’ for the represented thing. Some may prefer ‘theory’
instead of ‘logic’.



the semantics and abstract syntax of a language, rather than being too con-
cerned with issues of concrete syntax—parsing is a well understood technol-
ogy, and does not concern us here. Different formal methods provide different
logics and techniques for representing and reasoning about formal languages.
The style of representation impacts on both its expressive power and efficacy
for representing systems. There is often a trade-off between these two. An
overview of styles of representation is presented below in Section 1.2.1.

Giving a formal specification of a system is requires more precision than
giving an informal description, but this very difficulty encourages a clearer
analysis of the system. Mechanised logics cannot rely upon any ‘hand-waving’
over matters of syntax or semantics. Formal methods tools are constructed
by using either a theorem prover or an ad-hoc tool as a logic to represent lan-
guages or systems. The use of tools should facilitate the practice of formal
methods for the same reasons that computers are useful; computers pro-
vide high accuracy in complex systematisable tasks. The correctness proofs
typically found in formal methods are not necessarily mathematically deep,
but they are prone to simple errors whose effects can propagate throughout
the development. Formal methods tools should manage this detail, allowing
larger systems to be addressed, and automatisation should help to bridge the
gap between the prevailing and required level of mathematical sophistication
for formal methods. Section 1.2.2 gives an overview of the mechanisation of
formal methods.

1.2.1 Formal Embeddings of Languages and Systems

Languages are represented in a formal methods tool by ‘embedding’ the lan-
guage in the logic underlying the tool. Two broad styles of embedding can
be identified: deep and shallow [20]. They are depicted in Figure 1.4.

CONCRETE SYNTAX
I

Parse
|

i
ABSTRACT SYNTAX
I
DEEP: Inter pret

|

1
SEMANTICS ‘SHALLOW

Figure 1.4: Deep and Shallow Embeddings
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In a deep embedding, both the abstract syntax and the semantics of the
language are represented in the logic, whereas in a shallow embedding, only
the semantics of the language is represented. In a deep embedding, the
relationship between syntax and semantics (the ‘meaning’ or ‘interpretation’
relationship) is explicitly defined and reasoned about, whereas in a shallow
embedding the interpretation of abstract syntax occurs extra-logically. A
tiny example demonstrating both styles of embedding is shown in Figure 1.5.

In the choice between deep and shallow embedding, there is a trade-off
between expressiveness and ease of use [5]. Generally, it is easier to work
with the semantics of shallowly embedded languages, as one can work on the
semantics directly, rather than being directed to it through the syntax. It is
also typically easier to incrementally extend shallowly embedded languages.
For example, consider adding a multiplication expression to the example in
Figure 1.5. In the deep embedding we would need to redefine expressions and
expression interpretation, and re-prove all old results in the new language. In
the shallow embedding, we need merely define a new semantic abbreviation,
and prove old results just for the new expression.

However, a deep embedding may allow more meta-results to be stated and
proved about a language. Because the syntax of the language is represented
within the logic, we can state theorems involving syntactic conditions, and we
can prove theorems relying upon properties arising out of an interpretation
function limited by the fixed syntax of the language. The situation can
become slightly blurred if it is possible to semantically characterise a class of
interesting syntactic structures. Then, a shallow embedding can rely on this
semantic restriction in place of a syntactic one. An example of this is found at
the end of Figure 1.5, where the semantic side-condition ‘a is monotonically
increasing’ stands in place of the syntactic side-condition ‘a is a MINUS-free
expression’.

If a deep embedding is used to represent a language, the question remains
as to how much of the syntax is to be represented in the logic. Often, a
language consists of separable sub-languages, each of which may be able to be
represented in either a deep or shallow style. If the ‘depth’ of an embedding
refers to whether the syntax is represented in the logic, this distinction might
be well named the ‘breadth’ of an embedding. For example, in the deep
embedding of an imperative programming language, one may represent only
the syntax of the statement language, but leave the expression language as a
shallow embedding [36]. Alternatively, one might also define the syntax and
interpretation of the expression language [84]. One may even go as far as to
embed an assertion language for a reasoning system about the language [49].
The more of a language that is deeply embedded, the more meta-results are
possible, but the more unwieldy it is likely to be.
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Example Representation Problem

Say we must represent and prove facts about simple arithmetic expressions
involving integer-valued variables. Two approaches are outlined below.

Deep Embedding

We define the expression language exp:

erp ::= VAR v | exp PLUS exp | exp MINUS exp

and the meaning [_]_ : (ezp x (V — Z)) — Z of expressions under variable
valuation s:

[VAR 0] = s(v)
[a PLUS b], = [a]s + [b]s
[a MINUS 0], = [a]s — [b]s

Shallow Embedding

Here, we identify expressions with their semantics.

VAR v = As. s(v)
aPLUS D = Xs.als)+b(s)
a MINUS b = Xs. a(s)—b(s)

Comparison

The embeddings are similar, and it is possible to prove, e.g. that:
[a PLUS b]s = (a PLUS b)(s)

For the deep embedding we can state and prove theorems such as:

all MINUS-free expressions are monotonically increasing

However, under the shallow embedding, there is no semantic analogue to
the syntactic condition ‘MINUS-free expression’, and so the theorem is im-
possible to state, let alone prove. The situation is not always hopeless; for
example, here it is possible to state and prove theorems such as:

if ¢ and b are monotonically increasing, then so is ¢ PLUS b

Theorems like this cannot be stated for the language as a whole, but can be
repeated for each applicable syntactic category.

Figure 1.5: Example: Styles of Embedding for Arithmetic Expressions
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Finally, most studies of semantics in computer science distinguish between
styles of semantics, such as operational semantics and denotational semantics.
This ‘style of semantics’ is mostly independent of our ‘style of embedding’;
there are examples in the literature of deep and shallow embeddings for most
major styles of semantics. See Table 1.1 for citations to representative work.
There is a gap in this table: there have been no investigations of shallow
embeddings for operational semantics. It is in principle possible to have a
shallow embedding for an operational semantics, as a syntax is not strictly
necessary to close a set of relations. Alternatively, a language might be
defined by abbreviations of syntax in a core abstract machine which itself
had a normal operational definition.

Deep ‘ Shallow

Operational (36, 84]
Denotational [36] 3]
Predicate Transformer | [97] [102]

Table 1.1: Examples of research using deep and shallow embeddings for
various styles of semantics.

1.2.2 Mechanisation of Formal Methods

There is a range of activities in formal methods which can be supported by
tools, and there is a spectrum of solutions to support the logical activities in
a formal methods tool.

The principal activities of formal methods are logical ones such as system
and property description, proof-obligation generation, and property proof.
Tools may also provide support for meta-logical activities such as adding
new methodological components, logical axioms and rules, or proof tactics.
As with any computer-aided activity, tools can support administrative ac-
tivities such as managing cooperative work, browsing or replaying completed
developments, managing component libraries and version control.

There is a spectrum of approaches which can be used for formal methods
tools. The principal activities of formal methods tools are logical ones, and
so may be best supported by component sub-systems which are primarily de-
voted to supporting sound mathematics. Ultimately, soundness is critical for
formal methods tools: their raison d’étre is to help their users avoid reasoning
errors. Theorem provers are such systems, and can be used in formal meth-
ods in one of two ways: as external or same-system components. External
theorem provers are used as components outside the main part of the formal
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methods tool. They are typically used to perform particular logical tasks
for the tool such as proving side-conditions. Same-system theorem provers
are integral to the tool, and share a common framework for representing the
language. They have the advantage of not being subject to errors arising out
of interaction between mutually inconsistent logical systems.

Of course, a formal methods tool might not make use of a theorem prover
at all, but rather provide a hand-crafted ad-hoc system for dealing with
the logical parts of the tool. Other lightweight formal methods tools might
provide no support for proof, but merely aim to help users write down the
description of systems and their properties.

1.3 Mechanising Program Refinement

Program refinement is a branch of formal methods which uses a ‘wide-
spectrum language’ to represent both executable programming statements
and non-executable specification constructs. This wide-spectrum language
allows a seamless gradation between abstract system specifications and con-
crete implementations. A brief overview of program refinement and existing
program refinement tools appears below.

1.3.1 Program Refinement

Program refinement was invented by Back [7] and independently discovered
and popularised by Morris [75] and Morgan [71, 72]. It is based on a generali-
sation of Dijkstra’s guarded command language [31]. The guarded command
language is a simple imperative programming language with constructs such
as sequential composition, assignment, alternation, and while loops. Dijkstra
defined four ‘healthiness conditions’ which his programming language satis-
fied. These conditions made the language potentially implementable and also
facilitated reasoning about the language. The development of the refinement
calculus came about through an investigation of the guarded command lan-
guage where some of these restrictions were relaxed or removed. Hence the
refinement calculus is a wide-spectrum language which can represent both
imperative programming statements and non-executable specification con-
structs. A refinement relation on statements in the language can be defined
which preserves functional correctness and decreases nondeterminism. Sys-
tem specifications abstract implementation details and so are typically highly
nondeterministic. The refinement relation provides a gradation between ab-
stract system specifications and their concrete implementations.
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The refinement calculus is best known as a formal stepwise program de-
velopment method, as promulgated by Morgan[72]. Under this approach, a
developer starts with a specification which characterises a set of allowable
behaviours for a program. The developer then applies ‘refinement laws’ to
incrementally transform the original specification statement into a concrete
program. This approach can be methodologically contrasted with the ‘invent-
and-verify’ program development methods based on the refinement calculus,
such as VDM [51] or the B method [1]. Here, development again starts with
an initial specification, and the result is executable code. However, the trans-
formations here are rather larger, usually involving the data-refinements of
whole modules, rather than the procedural refinement of individual state-
ments.

The refinement calculus can be used in other ways. King and Arthan’s
compliance notation tool [6, 54] utilises much the same refinement laws as
Morgan’s calculus. However, instead of seeing the refinement calculus as the
basis of program development, King and Arthan use it as a way of struc-
turing the presentation of the verification of code, i.e. demonstrating the
compliance of code with its specification. Another application which uses a
similar semantic framework to the refinement calculus is Digital’s experimen-
tal Extended Static Checking system [61]. This system is not meant for the
derivation of programs satisfying characteristic specifications, but rather for
automatically checking that programs satisfy specific kinds of simple prop-
erties.

1.3.2 Mechanisations of Program Refinement

The use of refinement for the development of large programs has been limited,
partly because of a lack of suitable tools. This situation may be changing,
as a number of experimental refinement tools are now being developed. All
refinement tools provide mechanisms for system and property description;
and most refinement tools provide at least ad-hoc support for the generation
and proof of proof-obligations arising out of the application of refinement
laws.

In the refinement calculus, formulae and programs are not separable;
specification statements (which are programs) contain formulae, and data-
refinement rules have proof-obligations involving the refinement of programs.
Refinement tools must provide at least some support for manipulating both
programs and formulae, and so there is great appeal in tools using same-
system theorem provers for proof obligation generation and proof.

There are various extant refinement tools which support a methodology
of progressive incremental transformation. The RED tool [50] was one of
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the earliest refinement tools. It had ad-hoc generation of proof obligations,
and almost no support for proof. Tredoux’s [97] mechanisation of a theory
of predicate transformers was a deep embedding in the HOL theorem prover.
The RRE tool [80] was another early system which introduced refinement
tactics and scheme variables in program refinement. It had ad-hoc generation
and proof of proof obligations. The UQPRT project [28, 29, 27] uses the Ergo
theorem prover [99] for same-system proof obligation generation and proof. It
has a shallow embedding of its refinement language, with its semantics given
axiomatically. The Refinement Calculator project [24] is based on the HOL
theorem prover [37] for same-system proof obligation generation and proof. It
uses a shallow embedding of its refinement language, with its semantics given
definitionally. Tools for the B method [1] include Pratten’s AMN tool [88],
the B Toolkit [59]. Tools for VDM-related methods include ural [52], RAISE
[89], and IFAD’s VDM-SL Toolbox. Most of these systems use ad-hoc proof
obligation generation, and satisfy proof obligations using external theorem
provers. Finally, Grundy’s refinement tool [42] uses an unusual semantics
based on a three-valued logic, but is notable in demonstrating the utility of
window inference [90] for refinement tools. Window inference is now used in
the Refinement Calculator, the UQPRT, and in this dissertation.

1.4 The Isabelle Theorem Prover

Isabelle [85] is a generic theorem prover in the LCF [35] family of theorem
provers implemented in the ML language [66]. It is generic in the sense
of being a logical framework which allows the axiomatisation of various
object logics. Isabelle also provides a collection of extensible proof tools
which are instantiable for specific object logics. Isabelle’s object logics in-
clude Isabelle/ZF, which is the main logic used in this dissertation. A brief
overview of LCF theorem provers, Isabelle’s meta-logic, and the object logic
I[sabelle/ZF is provided below. Aspects of Isabelle not discussed here in-
clude its theory definition interface, theory management, tactics and tacti-
cals, generic proof tools, its goal-directed proof interface, advanced parsing
and pretty-printing support, and its growing collection of generic decision
procedures.
Isabelle/ZF was useful for work in this dissertation because:

e it has a well developed collection of mathematical results;

e it has a collection of powerful and extensible tactics and proof tools,
which allow us to develop tactic-driven refinement tools [40];
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e as an LCF theorem prover, it is a safe framework for developing new
inference systems, such as that described in Chapter 2; and

e it is untyped, which is important for work introduced in Chapter 5.

1.4.1 LCF Theorem Provers

Theorem provers in the LCF family represent theorems of a logic by values
of an abstract datatype in their implementation language. The only way to
construct values of this type is by appeal to functions in the datatype which
correspond to axioms and primitive inferences rules of a logic. The implemen-
tation of this abstract datatype forms the ‘core’ of an LCF theorem prover.
A small core can be readily inspected for correctness. Then, the soundness
of the theorem prover relies only upon the type safety of the implementation
language. A strong type discipline will prohibit invalid ‘theorems’ from aris-
ing. LCF theorem provers have traditionally been implemented in variants
of the ML language, which is one of the few languages with a formalised
semantics and a demonstrably sound type system.

LCF theorem provers provide a safe foundation for extensible theorem
prover development. Extensions to the theorem prover need not be overly
concerned with soundness, as this will be guaranteed by the core. LCF theo-
rem provers use this approach in the construction of reasoning environments,
tactic languages, and other proof tools.

1.4.2 Isabelle’s Meta-Logic

As a generic theorem prover, Isabelle can represent a wide variety of logics.
Isabelle represents both the syntax of its meta-logic and the syntax of its
object logics in a term language which is a datatype in ML. The language
provides constants, application, lambda abstraction, and bound, free and
scheme variables. Scheme variables are logically equivalent to free variables,
but may be instantiated during unification. These are readily utilised in the
development of prototype refinement tools supporting meta-variables [81].

Isabelle’s meta-logic is an intuitionistic polymorphic higher-order logic.
The core datatype of thm implements the axiom schemes and rules of this
meta-logic. Isabelle provides the following constants in its meta-logic which
are used to represent the rules and axioms of object logics:

Meta-level equality A = B, is used to represent definitions of an object
logic.
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Meta-level implication A = B, is used to represent rules of an object
logic. Multiple hypotheses A = (B = ...(C = H)...) are some-
times represented using syntactic sugar [A; B; .. C] = H. In
this dissertation we will sometimes write single or multiple hypothesis
implications as follows:

A B .. C
H

Se] N

Nested meta-level implications are possible: in alternation they corre-
spond to either assumptions or obligations.

Meta-level universal quantification A z. P(z) is used to represent var-
iable-capture side-conditions in the statement of rules or axiom-schemes
in an object logic.

Meta-level function application F(z) is used to represent the applica-
tion of an operator F' to an operand z.

Meta-level function abstraction Az.F(z) is used to represent the con-
struction of parametric operators.

An Isabelle object logic is specified by declaring constants and their syn-
tax, and by stating the axioms and inference rules for the logic. Isabelle
implements a core datatype thy of theories, which is used to manage theory
extension, and version control after the redefinition of theories. Definitional
or axiomatic extensions to theories are possible. In Isabelle, object logics
and theories are treated in the same manner. Object logics differ from most
theories in providing non-definitional axioms and rules.

1.4.3 Isabelle/ZF

I[sabelle/ZF is an Isabelle object logic for untyped set theory. It is based
on an axiomatisation of standard set theory in first order logic. The defined
meta-level type of sets 7 is distinct from the meta-level type of first-order logic
propositions o. Families of sets can be defined as meta-level functions from
index sets to result sets, and operators can be defined as meta-level functions
from argument sets to result propositions. From this basis, a large collection
of constructs are defined and theorems about them proved. Isabelle/ZF
also provides a mechanism for defining recursive datatypes and inductively-
defined relations.

Some Isabelle/ZF notation which is frequently used in this thesis includes:
a: Aora € Afor set membership, P A for the powerset operator, A C B for
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subset, and {z:A | P(x)} for set comprehension of elements of A satisfying
P. Appendix A lists all the mathematical notation from Isabelle/ZF used in
this thesis.

1.5 Outline of this Dissertation

Program refinement proceeds by transformation, and Chapter 2 presents a
flexible framework for transformational proofs. This framework is a version
of window inference [90] which is more general in allowing transformation
under non-preorder relations and ‘window opening’ at multiple points.

Chapter 3 describes the mechanisation, in Isabelle/ZF, of a set-transformer
presentation of a weakest precondition semantics for the refinement calculus.
Chapter 4 describes how we can use Isabelle’s meta-logic to lift this set
transformer semantics to a predicate transformer semantics which has the
expressive power of untyped set theory, and much of the clarity of simple
type theory.

The work in Chapters 3 and 4 is done with a completely general state-
type. Chapter 5 specialises this state-type to represent named program vari-
ables. This allows us to define variable assignment, framed specification
statements, local blocks and parameterisation. This representation makes
use of the expressive power of Isabelle/ZF. Chapter 6 echoes Chapter 4, lift-
ing these set transformer statements to predicate transformers, but taking
advantage of the additional structure on our state types. We also describe
our method for handling procedures and recursive procedures.

Chapter 7 describes definitions and rules for data-refinement. Chapter 8
provides a case-study of the use of the mechanised refinement theory in the
development of a program which tests the validity of formulae in propositional
logic. Chapter 9 concludes with a summary of the dissertation, arguments
for the main theses, and an indication of future work.

Finally, all of the theorems and rules stated in this thesis have been
proved in Isabelle/ZF, using theories containing only definitional extensions
to the standard logic. The proofs of these theorems and rules have not been
given in this dissertation, as they are generally straightforward; usually by
appeal to definitions, earlier results, and completely standard mathematical
techniques. However, they do appear on the web at:

http://www.cl.cam.ac.uk/users/ms204/settrans/
In this thesis, the point of interest is not in the proofs of theorems and rules,
but rather in their statement, and especially how elements of the refinement
calculus are represented in our theory.

19



20



Chapter 2

Contextual Transformational
Reasoning

Window inference is a style of reasoning which provides the problem de-
composition of natural deduction and the sequent calculus, and the intuitive
transformational style of equational reasoning. We give an overview of early
versions of window inference, and lead into a generalised form of window
inference which allows the transformation of windows under non-preorder re-
lations, side-conditions on window opening and window transformation, and
window opening at multiple locations. The form of window inference rules
discussed here motivates many of the refinement theorems given later in this
dissertation.

Natural deduction and the sequent calculus are two styles of reasoning
familiar to logicians. They are analytic, providing mechanisms for problem
decomposition and easy access to logical context. They have been central to
proof theory, and have a role in taught courses on logic. However, although
they were meant to capture the essence of the use of logic by mathematicians,
in practice they are not used for proof. They both encourage a reductionist
style of proof in which it is easy to lose sight of ‘where sub-goals come from’.

Equational reasoning is an alternative style of reasoning, involving the
progressive transformation of terms or formulae under equivalence relations
[38]. It is an arguably more natural style of reasoning, familiar to students
from proofs in secondary-school algebra. However, equational reasoning suf-
fers by not providing any mechanism for problem decomposition nor any easy
way to access context when transforming sub-terms.

Window inference [90] has many of the benefits of natural deduction/the
sequent calculus, and equational reasoning. It is a hierarchical transforma-
tional style of reasoning which provides mechanisms both for progressive
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transformation of terms and contextual problem decomposition. Window in-
ference was initially intended to support equational reasoning [90], but was
later generalised by Grundy to admit preorder relations [41, 43]. This gener-
alisation allowed window inference to be used to reason about the program
refinement relation. I have previously proposed further generalisations to
window inference, to admit arbitrary composable relations and allow win-
dow opening at multiple points [96]. We re-present that work here. These
generalisations were later independently reported by von Wright, along with
several other extensions to window inference [103].

Grundy’s refinement tool [42] demonstrated the utility of window infer-
ence for refinement tools. Other current refinement tools [102, 29] now also
use window inference. The window inference rules discussed in this chapter
motivate the form of the refinement rules we present in later chapters. Un-
derlying window inference are relation composition theorems for combining
a sequence of transformations. For program refinement this is the transi-
tivity of refinement as seen in Section 4.2, and for data-refinement this is
the composition of data-refinement with procedural refinement, as seen in
Section 7.3 The main step in a window inference proof is to apply a window
transformation rule, or in our terminology below, to transform at a locus.
For program refinement, these transformation rules motivate the form of the
statement introduction rules we list in Section 4.2 and Section 6.4. Window
opening rules (or loci) are used to decompose the structure of a problem. For
program refinement, these rules motivate the form of the refinement mono-
tonicity theorems we have listed in Appendix C.

2.1 Window Inference

Window inference maintains a hierarchy of problem decomposition during a
proof—while a problem can be readily decomposed into smaller problems,
the information present in the original problem isn’t lost. Sub-problems
(represented as ‘windows’) are treated one at a time, and maintained in a
window stack. The transformation of sub-problems may give rise to auxiliary
side-conditions. Window inference is in some ways similar to conditional
contextual rewriting, but is intended to support interactive proof by humans,
and supports transformation under non-equivalence relations.

2.1.1 Window Inference as Natural Deduction

Like natural deduction or the sequent calculus, window inference is a generic
style of inference applicable across a wide variety of logics. There are several
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ways of presenting logics for window inference. The original presentation [90]
used logical rules acting over values describing windows. A notion of window
equivalence was given, and used to justify the soundness of the window in-
ference rules. Grundy’s presentation [43] instead described window inference
rules by translation to natural deduction. This provided an easy soundness
argument by appeal to the soundness of natural deduction, and also aided in
(and was motivated by) the implementation of window inference in theorem
provers supporting natural deduction.

Grundy’s presentation is based on forward reasoning, with windows rep-
resented by theorems. Another presentation of window inference as natu-
ral deduction uses backward reasoning, with windows represented by proof-
goals containing instantiable scheme variables for the final term [95]. This
is in many ways closer to the initial presentation of window inference than
Grundy’s: in the backward version, ‘opening rules’ actually apply at open-
ing, whereas in Grundy’s forward version, ‘opening rules’ apply at window
closing.

We will now review window inference by translation to natural deduc-
tion. This presentation uses forward reasoning, but differs from Grundy’s
in allowing side-conditions on window opening rules. Our presentation leads
into the formal description of flexible window inference in Section 2.2.

Windows

The central element of window inference is the window, which contains a term
of interest called the focus, a relation under which the focus is being trans-
formed, and contextual information which can be used in the transformation
of the focus. A window is represented by a theorem of the form:

F - R(F(), Fn)

where R is a preorder relation between an initial focus F, and our current
focus F,,. T" are our global and contextual assumptions.

Initial Window

When starting a window inference proof, we supply an initial focus Fj, a
preorder relation R, and any global assumptions I'. The initial window is
represented by the reflexivity of R:

F - R(FU, F())

23



R(F07Fn) A
[ = R(Fy, Fy) R(Fy, Fpi1) I''A = R(Fy, Frq1)

Figure 2.1: Window Transformation

Window Transformation

A window I' = R(Fy, F,,) can be transformed by transforming its focus F),
to a new focus F, ;. A transformation theorem:

#
R(Fna Fn+1)

is used in conjunction with the transitivity of R to construct a rule:

R(Fy, F,) A
R(F07 Fn-l-l)

Resolving the main antecedent of this rule against the theorem for the original
window results in a transformed window represented by a theorem R(Fy, Fp,11)
with new side-conditions A. We depict window transformation in Figure 2.1.

Window Stacks

A window stack records the current problem decomposition hierarchy. The
top window of the stack describes the current problem, and the bottom
window of the stack describes the initial problem. In window inference, only
the top window in the window stack can be changed. A window stack can
be represented by a stack of theorems.

Window Opening and Closing

To further de-compose the current problem, we may open a new window
on a selected sub-term of the current focus. The new window is pushed
onto the window stack. Its focus will be the selected sub-term, and the new
relation and any additional context are governed by the opening rule used.
If a window represented by a theorem I' = R(F}, F[f]) is opened at the
sub-term f with chosen preorder r, a new sub-window is pushed onto the
window stack. This sub-window is represented by the reflexivity of r, with
both the parent’s assumptions I', and any new contextual assumptions ®:

[0 = r(f,f)
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I — R(Fy, F[f]) IA, 0 = R(Fo, F[f'])

R(Fy, FIf]) @ = r(f.[")

©

r is reflexive

R(Fy, F[f'])

Lo = r(f,f) M oA = r(f,f)

T — R(Fo, FIT)) W) = R(Fo, F[f])

Figure 2.2: Window Opening, Transformation, and Closing

The new context ® is determined by inspecting an opening rule of the form:

®—=rf,f) ©
R(FIf], FIF')

Though called an ‘opening rule’, it is applied to transform the parent window
when the child window is closed.

In a window stack deeper than one window, the top window may be
closed. The top window is popped from the window stack and its focus
replaces the sub-term in the originally selected sub-term in its parent window.
The opening rule is used with the transitivity of the parent relation R to
construct a rule:

R(F, Fifl) ®=r(/./") ©
R(Fy, F[f"])

Resolving the antecedents of this rule against the parent window and the
transformed sub-window results in the transformation of the parent window
to R(Fy, F[f']), with new side-conditions ©. Window opening, (sub) window
transformation, and window closing are depicted in Figure 2.2.

Transform Context

The context of the top window can be transformed. Given a window:

AT = R(F,, F)

the context A can be transformed by appealing to a transformation theorem
B,T" = A, resulting in a new window:

B,T' = R(F,, F)
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The transformation theorem can itself be constructed using window inference
techniques, starting with initial focus A, initial context I', and transforming
under the relation <.

Opening Rule Selection and Rule Re-Use

When opening a window on a sub-term in the current focus, the opening rule
used determines the relation and context for the sub-window. However, if a
collection of opening rules is maintained, an appropriate opening rule can be
implicitly selected, so that a user need only specify the position at which the
new window should be opened. The automatic selection of window opening
rules is an important part of the ‘user interface’ of window inference. It is
not unproblematic—for any specific position in a focus there may be many
applicable opening rules. Grundy [42] outlines one way of dealing with this
issue: to heuristically select a single ‘best’ window opening rule.

Given a collection of opening rules, it is possible to implicitly derive new
opening rules. Grundy [42] proposes various ways of implementing rule re-
use, including using window opening composition, relation strength and lifted
relations. The Ergo theorem prover’s window inference facility uses relation
strength, relation inverses, and also provides a wide variety of possible ways
to matching against rules [99]. The most important of all of these mech-
anisms is the implicit composition of window opening rules in order to al-
low window opening at deep sub-terms. The collection of window opening
rules maintained will usually all open on immediate sub-terms. The implicit
composition of window opening rules will allow a user to open on a deeper
sub-term, while increasing the size of the window stack.

The problem of selecting between multiple opening rules is exacerbated
by derived opening rules. However, the process of derivation will often supply
clues as to the relative strength of the derived rules, aiding in the heuristic
solution of the ‘best’ rule.

2.2 Flexible Window Inference

Earlier versions of window inference required transformation relations to be
preorders. This means that they could not be used to reason about data-
refinement. Moreover, the problem decomposition provided by window infer-
ence only allows users to work on one sub-problem at a time. The restriction
is not readily apparent in the linearised presentation of completed window
inference proofs. However, in the exploratory development of a window infer-
ence proof, users may wish to survey more than one sub-problem at a time,
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or to quickly alternate between working on different sub-problems. Flexi-
ble window inference [96] as re-presented here allows the transformation of
terms under arbitrary composable relations, and allows the contextual survey
of many sub-problems simultaneously.

The framework proposed here should not be regarded as a specific user
interface for inference. Flexible window inference is a design space for hier-
archical transformational inference systems. For example, simple constraints
on flexible window inference can reduce it to an implementation of window
stacks or window trees. Further experimentation and HCI research is re-
quired to determine versions of flexible window inference which are suitable
for specific inference applications.

2.2.1 Flexible Window Inference as Natural Deduction

Just as we presented standard window inference by translation to natural
deduction in Section 2.1.1, we now present flexible window inference in terms
of natural deduction.

Proof State and Loci

In Section 2.1.1, the state of a window inference proof was represented as
a stack of theorems implicitly joined by opening rules. Here, the state of
a flexible window inference proof is represented by a main theorem, and an
unstructured collection of opening rules called loci:

1. The main theorem I' = R(Fy, F},) describes the transformation, under
some relation R, of the initial term Fj to the current top-level focus
F,,, with global assumptions I'.

2. Each locus L; provides a view upon the state of the proof, and is of the
form:

(I)i = ri(ﬁvﬁl) 61
Ri(Filf:], Filfi])

where F;[f;] matches the current top-level focus. A locus provides access
to a window, opening onto a specific position with focus f; and providing
additional context ®;. If this focus is transformed to f/, the locus
will transform the main focus F;[f;] to F;[f/] and generate new side-
conditions ©;.
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Note that something must be done if a locus is rendered ill-formed by the
transformation of the state at another locus, but at this level of abstraction,
no action is specified. Loci management policies may be implemented at
higher levels of the user interface in order to avoid or handle this problem.

Relations are not required to be transitive, but in order to transform
the top-level focus using some locus L;, the main relation R must at least
compose with the relation R; to give some new top-level relation R'. A col-
lection of relation composition theorems is maintained and will be appealed
to implicitly in the course of a flexible window inference proof.

Initial Window

To start a new flexible window inference proof, the user supplies an initial
focus Fjy, and initial global assumptions I'. The initial proof state is:

1. an initial top-level theorem I' = Fy = Fj, and

2. an empty collection of loci.

Add or Remove a Locus

A locus may be added to or removed from the collection of loci. The main
theorem is unchanged.

Transform at a Locus

A user may choose to transform the focus accessed by a locus in the collection
of loci. This results in a change to the main theorem, but the collection of loci
is unchanged. To effect a transformation, the user supplies a transformation
theorem ® = r(f, f') and nominates a locus, which will be of the form:

o= r(f,.f') O
RI(F[f], F[f1)

An appropriate relation composition theorem:

R(Fy,F,) R(F, F) U
R"(Fy, F)

is chosen to change the state R(Fy, F[f]) to a new state R"(Fy, F[f']) with
additional side-conditions © and V.
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Transform a Locus

A locus may be changed by transforming its context or side-conditions. This
results in a change to one locus in the collection of loci, but the main theorem
is unchanged. The locus to be transformed will be of the form:

A, = r(f,f) B,O
R(F[f], F[f1)

To change the side-condition of a locus, the user supplies a transformation
theorem B',© = B. This can be generated by window inference techniques
by transforming an initial focus B with context © to a final focus B’ under
the <= relation. The nominated locus is replaced by a new locus:

A, = r(f,f) B0
R(F[f], F[f1)

To change the context at a locus, the user supplies a transformation
theorem A, B,®,6& =— A’. This can be generated by window inference
techniques by transforming an initial focus A with context B, ®, O to a final
focus A" under the = relation. The nominated locus is replaced by a new
locus:

A ® = r(f,f') B,O
R(F[f], F[f1)

2.2.2 Constraints: Window Stacks and Window Trees

We can implement window stacks or window trees in this general framework
by imposing constraints on the maintenance of loci. Each locus opens onto a
specific position within the conclusion of the main theorem. We can use this
position information to partially order the loci. The illusion of repeatedly
transforming a single focus may be generated by repeatedly appealing to a
single locus in order to re-compute the focus and context after each change
to the main theorem.

So for a suitable definition of ‘deepest locus’, we will have an implementa-
tion of window stacks corresponding to existing versions of window inference
if we:

1. only present the focus available through the deepest locus;
2. force all transformations to operate upon the deepest locus;

3. only allow the addition of loci at positions inside the deepest locus; and
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4. only allow the removal of the deepest locus.

Similarly, for a suitable definition of ‘leaf locus’, we will have an imple-
mentation of window trees if we:

1. only present the focus available through leaf loci;

2. force all transformations to operate upon a leaf locus;

3. only allow the addition of loci at position inside a leaf locus; and
4. only allow the removal of leaf loci.

Window stacks or window trees may turn out to provide the basis for a
human-friendly interface. Other, more flexible, approaches to accessing and
maintaining loci may be required for an effective user interface application.
Experimentation and usability studies are required.

2.2.3 Problems and Benefits

Flexible window inference is more general than earlier versions of window
inference in several ways. It allows non-preorder relations, side-conditions
on window openings, and multiple window openings. These generalisations
bring with them new problems whose solution must be traded with any
increase in flexibility. This is discussed below.

Non-Preorder Relations

Window inference was originally proposed to use only equivalence relations
[90]. Grundy’s implementation allowed for preorders [41], and Grundy re-
ports that Robinson had suggested that reflexivity need not be a condition
of relations used in window inference. Flexible window inference requires
only that the relation in the main top-level theorem be composable with any
relation generated by a used loci.

In Grundy’s presentation of window inference, reflexivity is used to pro-
vide the initial theorem r(f, f) for a sub-window. This is unnecessary even
in Grundy’s system, as the first transformation theorem r(f, f’) used on this
sub-window could serve as the initial theorem for the window. If a sub-
window is immediately closed after opening, then no change results to the
parent window, and the uninitialised sub-window could simply be discarded.
Flexible window inference does not maintain any sub-windows explicitly, and
hence has no call for reflexivity of relations.
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Grundy uses transitivity for two purposes: firstly at window closing, to
justify the transformation of a parent window; and secondly prior to window
closing, to transform each sub-window. Flexible window inference avoids this
latter use of transitivity by immediately resolving all sub-term transforma-
tions to the top-level theorem. Moreover, only the top-level relation must be
composable.

This extra generality exacerbates the problem of choosing between open-
ing rules. By allowing our relations to be non-transitive, we allow them
to compose with other relations in arbitrary ways, increasing the number
of derived loci we can create for a position. In our presentation we have
avoided this problem by sweeping it under the carpet—Iloci are added explic-
itly, rather than being chosen based on a new position.

Multiple Window Openings

The standard difficulty with opening at multiple foci independently is that
it is not sound to use context from certain multiple window opening rules
simultaneously. For example, consider the opening rules for transforming
each side of a conjunction:

B=— A=A A=— B =D
ANB=AANB ANB=ANANDB

In order to transform a focus term A A B, we cannot both assume A to
transform sub-focus B and simultaneously assume B to transform sub-focus
A. Under flexible window inference, the context and focus for each sub-
problem is recomputed after each transformation of the main focus. So for
example, if our main focus is A A B and our collection of loci are the above
two opening rules, then after using context B to transform the sub-focus A
to A’, the derived context for the sub-focus on B would be A’.

Thus in this generalised setting, the effect of a transformation may be
non-local, perhaps rendering other loci inapplicable. The transformation of
the top-level theorem can render a locus invalid in a number of ways: by
making the position in that locus not a valid position in the top-level term;
by making the ‘term with a hole’ F[—] not match the top-level term; or by
making the relation R not compose with the relation in the top-level term.
Stack and tree constraints such as those mentioned in Section 2.2.2 avoid
or ameliorate this problem. However, other approaches may prove more
suitable. For example, we could automatically removed ill-formed loci, or
perhaps notify the user when a side-effecting transformation occurs.
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Chapter 3

Set Transformers

We present a shallow embedding of a weakest precondition semantics for the
program refinement language used in this thesis. Commands in the language
are represented by set-transformers in the object logic of Isabelle/ZF. We
also discuss the definitions of refinement and some healthiness conditions.
We highlight how it is possible to sometimes extract ‘types’ from the argu-
ments of constants defined in Isabelle/ZF. We also show how Boolean guards
and other expressions in the refinement language can be represented by sets
of states and object-level functions respectively. Finally, we define a novel
interfaced recursion statement which supports the step-wise development of
recursion blocks.

Weakest precondition semantics was first used by Dijkstra in his descrip-
tion of a non-deterministic programming language [31]. That language was
generalised to the refinement calculus by Back [7], and later by Morris [75]
and Morgan [71]. Textbook presentation of weakest precondition semantics
usually represent conditions on states as formulae. However, such presenta-
tions can be unclear about the logic underlying these formulae. Mechanisa-
tions of the refinement calculus must perforce be precise, and two approaches
have been taken. The most literal approach is to use a modal logic with pro-
gram states forming the possible worlds. Work done in the Ergo theorem
prover [99] is in this vein [28]. However, support for modal logics is currently
unwieldy in most theorem provers. More importantly, using a modal logic
hampers the re-use of results from existing classical mathematics.

Another approach is to represent program states explicitly in a classi-
cal logic. Conditions can then be represented as collections of states. For
example, Agerholm [2] (and later the Refinement Calculator project [102]
and others [86, 57]) used predicates (functions from states to Booleans) in
higher-order logic to represent sets of states. Our approach uses this kind
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of representation, but as we are working in untyped set theory, we represent
conditions by sets of states. This chapter demonstrates that this kind of
shallow embedding can be done in a first-order setting.

The refinement language presented here is expressed in terms of a com-
pletely general state type. We will postpone until Chapter 5 the discussion of
statements which use program variables. That chapter will also reveal why
we have chosen to work in a very expressive logic such as Isabelle/ZF.

Methodologically, our calculus is intended to support program refinement
as presented in Morgan’s influential textbook [73]. In particular, we provide
specification statements [71] and value-binding statements which are not used
in the Refinement Calculator project. We also describe how to support the
stepwise refinement of recursion blocks with the use of interfaces and embed-
ded contextual information.

3.1 Set Transformers: A Shallow Embedding

Weakest precondition semantics is usually presented by inductively defining
an interpretation wp(c, q) over a language of refinement language statements
c and arbitrary postconditions q. However, the mechanisation described here
uses a shallow embedding—statements are identified with abbreviations for
their semantics. Instead of defining an interpretation operator wp, we instead
define each statement as an abbreviation for a specific set transformer from
a set of states representing a postcondition to a set of states representing the
weakest precondition.

Henceforth, we write P4 p for the function space of heterogeneous set
transformers PA — P B, and we write P, for the homogeneous set trans-
formers Py 4. Our ‘user-level’ refinement theory will ultimately be concerned
only with homogeneous set transformers, but in the development of that the-
ory we will sometimes consider heterogeneous set transformers.

3.1.1 Skip and Sequential Composition

To illustrate the shallow embedding of the statements in ZF, we define' the
skip and sequential composition statements as follows:

Skipy, = MNq:PA.q
a;b = Xg:dom(b).a‘(b‘q)

'Remember that the back-quote operator * is infix function application in Isabelle/ZF.
Appendix A contains a summary of the notation used in this dissertation.
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Note that in the definition of the skip statement we explicitly require an
operand A to represent the state type. In simple type theory this could be left
implicit, but as we are using ZF, we must explicitly bound the set constructed
on the right hand side of the definition. However, in the definition of the
sequential composition statement we haven’t supplied a state type, because
we can extract the state type from the structure of its sub-components. Here,
the sub-statement b should be represented by a set transformer in P, p for

some final state type A and initial state type B. In this case, the domain of
b will be P A and so we have:

a;b = Nqg:PA a'(bq)
It easy to see that skip and sequential composition are set transformers.

That is:

a PB,C b : 'PA,B

Skip, : P
Pa a4 as;b:Pac

3.1.2 State Assignment and Alternation

The definition of skip and sequential composition illustrated the represen-
tation of set transformers in ZF, and demonstrated how we can sometimes
extract the state type from a statement’s components. We will now define the
semantics of state assignment (which functionally updates the entire state),
and alternation (‘if-then-else’) in order to illustrate the representation of ex-
pressions in our language. As it was natural to use sets of states to represent
conditions on states, we similarly use sets of states to represent Boolean ex-
pressions within statements. To represent expressions of other types, we use
ZF’s standard representation of functions and relations as sets of pairs. State
assignment and alternation are defined as follows:

(FY, = Mqg:PA.{s:dom(F) | F's € ¢}
ifgthenaelsebfi = \¢g:dom(a)U dom(b).
(9 N a‘q) U (U(dom(a) Udom(b)) — g) Nbq)

Note that in these definitions, we again extract the state type from the
structure of sub-components. However, in the definition of state assignment,
we extract the state type not from a sub-statement, but instead from the
expression F', which should be a state-function from some state type B to
state type A. In the definition of alternation we take the union of the domains
of a and b, because the final state ¢ may be reached through either a or
b. We also extract the actual underlying state type A, using the fact that
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UMPA) = A. So when F : B — A and a,b : P4 p, we have the simpler
equalities:

(FY, = MNq:PA{s:B| F'se€q}
ifgthenaelsebfi = Ag:PA. (gNa‘q)U((A—g)Nbq)

It is easy to see that state assignment and alternation are set transformers:

F:B— A a:Pa b:Pa
(F),:Pap if gthenaelse b fi: Py

You may wonder why I have (apparently arbitrarily) restricted alterna-
tion to be a homogeneous set transformer, but have taken the trouble of
including an extra state type in the definition of state assignment, in order
to make it a heterogeneous set transformer. This is because it suits our
purposes: we are mainly concerned with developing a theory of refinement
laws over homogeneous set transformers, and so our definition of alternation
will do. However, we will need recourse to a heterogeneous state-assignment
statement in Chapter 5, and so define it here.

The equalities above correspond fairly closely to standard definitions of
state assignment and alternation [1, 13]. Back and von Wright’s [16] alterna-
tive definition of state assignment in terms of relation image can be proved
as a consequence of our definition. For a state function F': B — A we have:
(Fy,=Aq:PA.F ! “q.

Our definitions also receive some measure of validation by the proof of
theorems about our language which we would expect to be true. For exam-
ple, the skip statement is the identity state-assignment, and the sequential

composition of state assignments is the assignment of their compositions.
That is, for F: A — B and G : B — C we have:

Skipy = (As:A.s), (F)pi (G =(GoF),

Similarly for alternation statements, we would expect and it is true that an
alternation with identical branches is equivalent to its common branch, an
alternation with a true guard (universal set) is equivalent to its first branch,
and an alternation with a false guard (empty set) is equivalent to its second
branch. That is, for g : P A, and a, b, ¢ : P4, we have:

ifgthencelsecfi=c¢ ifAthenaelsebfi=a ifSthenaelsebfi="0
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3.2 Refinement and Healthiness

Program refinement takes place in a wide-spectrum language which con-
tains elements which are non-deterministic, non-terminating, and even non-
executable. The refinement ordering on programs reduces both non-determin-
ism and possibilities for non-termination. It preserves correctness, and so
plays a central role in the transformation of abstract specifications into cor-
rect and executable implementations. The statements we define in this thesis
are all monotonic set transformers. Monotonicity is one of Dijkstra’s origi-
nal ‘healthiness conditions’ [31]. In this section we present our definition of
refinement and correctness, describe monotonicity and monotonic set trans-
formers, and finally touch on other healthiness conditions.

3.2.1 Refinement and Total Correctness
We define refinement in a fairly standard manner [15], as follows:
a T b = Vg:dom(a).a'qC biq
That is, for a : Py p
aC b & Vg:PA a'qChbiq

If a T b, then the set of states in which we can execute b is larger than the
set of states in which we can execute a. Our definition uses the domain of a
for safety, so that b will have at least the behaviour guaranteed for anything
which can be safely executed by a.

We define total correctness in a standard way [9], as follows:

{p}c{a} = pCciq

That is, if {p} ¢ {q}, then p is contained in the set of initial states for which
we are allowed to execute ¢ and terminate in a state in ¢g. The refinement
relation preserves total correctness. For a, b : Py p,

aCb & Vp:PA¢@PB. {p}a{qt={p}b{q}

3.2.2 Monotonic Set Transformers

Monotonicity plays an important role in the development of recursion in the
wide-spectrum language. The condition of monotonicity is defined as follows:

monotonic(c) =V a b:dom(c).a C b= c'a C c'b
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That is, for ¢ : P4 p we have:

monotonic(c) =Va b:PA.a Cb= c'aCc'h

Within our ultimate ‘user-level’ theory of program refinement, we will
operate solely within a space of monotonic set transformers. We can define
the set of heterogeneous monotonic set transformers as follows:

Map = {c:Pap | monotonic(c)}

We write M 4 for the homogeneous monotonic set transformers M4 4.

3.2.3 Other Healthiness Conditions: Refining to ‘Code’

The refinement methodology described here aims to transform specification
statements until only ‘code’ remains. However, just what is executable code?
In the literature, the question of executability is usually held indeterminate,
in order to allow flexibility in the sophistication of our implementation lan-
guage. Dijkstra’s healthiness conditions go some way in restricting predi-
cate transformers to executable code. However even the full complement of
healthiness conditions is not sufficient. For example, in general we won’t be
able to execute a complicated specification statement which happens to be
mathematically equivalent to some executable statement.

Nonetheless, at the very least a final program will be strict, i.e. it will not
recover from an aborted state. Morgan and Vickers recommended a check
for strictness (or ‘feasibility’) at the end of a refinement development [69]. In
their setting, this check corresponds to a check for type correctness. However,
our semantics maintains a type-correct program throughout the development.
We also now introduce the termination healthiness condition, which is dual
to strictness. That is, if establishing any final state will do, then one may
can safely start (and be assured of termination) from any initial state. Our
standard definitions [13] of strictness and termination are as follows:

strict(¢) = ¢'@ = &
terminating(c) = ¢‘(U dom(¢)) = |UJ dom(c¢)
That is, for ¢ : Pap

terminating(c) & ¢'A = A

We won’t discuss the other healthiness conditions, as they are not used
in this thesis. For a general discussion and categorisation of healthiness
conditions from a lattice-theoretic perspective, see [12].

38



3.3 The Refinement Language

We have seen the definitions for the skip, sequential composition, state as-
signment and alternation statements in Section 3.1. Appendix B contain
the definitions of these and other atomic and compound statements. These
statements are all (monotonic) set transformers, as indicated in Appendix
C. The remainder of this section provides a brief commentary on individual
definitions, and presents theorems which help to validate our definitions.

3.3.1 Atomic Statements
Abort, Magic, and Chaos

The abort and magic statements Abort, and Magic, are the worst and best
statements respectively. Magic is an unimplementable statement which al-
ways terminates, and satisfies any required post-condition, including impos-
sible ones such as @. Abort will never establish any required postcondition,
except the impossible one @, and can be thought of as a non-terminating
statement. The chaos statement Chaos, is is just about the worst possible
statement—it will always terminate, but it may change the program state
in any manner whatsoever. Set transformers form a complete lattice under
refinement, and magic and abort are the least and greatest refinements. For
b : P4 we have:

Aborty C « b C Magic,
Magic and abort are also left-idempotent. For a, b : P4, we have:
Abort 45 a = Abort 4 Magic; b = Magic,

Magic and abort are right-idempotent given conditions on the left statement.
For a, b : P4 p with strict(a) and terminating(b), we have:

a; Abort 4 = Abort 4 b; Magic, = Magic 4

Assert, Guard, and Non-Deterministic Assignment

An assertion statement { P} , behaves like a skip statement when it is started
in a state which satisfies P, and otherwise aborts. The guard statement
(which Morgan calls ‘coercion’) (@) ,— will terminate establishing a state
in @, but will not change the state. The non-deterministic assignment [Q] , is
similar to the guard statement, but may change the state. We would expect,
and it is true that, a non-deterministic assignment statement is equivalent
to a chaos statement preceding a guard statement:
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[Q] 4 = Chaos4; (Q) ,—

If we consider the special cases of these statements where the operand is
either empty or total, we see that they are equal to one of the skip, chaos
or magic statements. These theorems reinforce our intuition that guarding
does not change the state, but that non-deterministic assignment may do:

{o@}, = Abort, (2) ,— = Magic, [@] , = Magic,
{A} , = Skipy (A) ,— = Skipy, [A] , = Chaos,4

Specification Statements

Morgan’s refinement methodology [73] centres on the use of specification
statements [71] which are transformed step-wise to an executable (and cor-
rect) implementation. A specification statement has some precondition P
and postcondition ). When executed in a state satisfying P it will termi-
nate and establish a state satisfying (), and otherwise it will abort. Morgan’s
specification statement includes a frame w of program variables which the
statement is allowed to modify. We define a framed specification statement in
Chapter 5, where we introduce our representation of program variables. For
now, we consider only two specification statements: the fixed specification
statement +[P, @], which does not change the state, and the free specifi-
cation statement '[P, @], which may change the state in any way at all.
As might be expected, we can construct these statements out of the assert,
guard and non-deterministic assignment statements. For P : P A, we have:

P, Qly={P},(Q)— TP, Ql,={P},;[Ql4

We can consider more general specification constructs: relational asser-
tion {R} , and relational non-deterministic assignment [R],. When the re-
lation in question is constructed by set comprehension, we will write these as
0=a1i.R(i,0) and 0 :=4 i. R(i, 0) respectively. Relational non-deterministic
assignment is the main form of specification statement used in the Refinement
Calculator [102]. All the atomic monotonic set transformers can be expressed
in terms of these statements. For P : P A, () : P A, and F: A — A, we have:
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(Fy, = o:=pi.0=F" (Fy, = o=pt.0=F"

Q)= = o:=p0.0eQNi=0 {P}, = o=4ii€PANi=o0
[Qly = o0:=4i.0€Q

HP, Q), = o0:=4ii€PAN0EQAi=0

[P, Q) = o0:=4i.i€PAN0EQ

3.3.2 Choice Statements

We have already described one statement for choosing between two sub-
statements: alternation. From a semantic perspective there are ‘simpler’
binary choice statements: demonic choice M and angelic choice LI. Demonic
choice can be thought of as the operation of Murphy’s Law, and will always
choose the ‘worst’ of the possible statements. Angelic choice will always
choose the ‘best’ one, and can be thought of as a form of backtracking, or as
a user-directed choice. We can express alternation in terms of either demonic
or angelic choice. For g : P A and a, b : P4, we have:

ifgthenaelsebfi = (g),—3aM(4A—g),—;0
ifgthenaelsebfi = {g},5aU{A—g} ;0

Rather than just considering binary choice, we may consider a generalised
choice between a set of statements. We won’t use generalised choice in our
user-level theory of refinement, but it is useful in the comparison of various
of our statements. Again, we have defined a demonic [ |4C and an angelic
L14C form of generalised choice. Both forms of generalised choice specialise
to their binary equivalents when restricted to two-element sets of statements.
For singleton sets, they are equivalent to the single member statement, for
empty sets they are equivalent to aborting statements, and for universal sets
of (monotonic) set transformers angelic and demonic choice are equivalent
to the magic and aborting statements respectively. For a, b, c : P4 p we have:

HA{a,b} =alb |_|A{C}: c HAQ:AbortA
|_|A{a,b} =alb |_|A{C}: c |_|A®:Abort,4
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| I4P4 = Magic, [ 14P4p = Abort,
LMy = Magic 4 |_|AMA,B = Abort 4

Generalised demonic choice allows us to revisit our intuition that the
chaos statement is a terminating statement which may change any variable
in any non-desirable manner. Chaos is equivalent to the demonic choice of
all state assignment statements:

Chaosy = [ 14{(F),. F:A — A}

3.3.3 Value Binding Statements

Some programming languages provide statements which bind values to vari-
ables. These variables need not be assignable program variables. For ex-
ample, the ML language has patterns which bind values to non-assignable
variables [66]. Morgan’s refinement calculus makes heavy use of value bind-
ing statements, especially the logical constant statement [73]. His logical
constant statements bind values to program variables, and are in fact dual to
his local block statements. We present our quite different treatment of local
program variables in Chapter 5. Nonetheless, in the spirit of Morgan’s re-
finement calculus, we consider angelic and demonic value binding statements,
which we call logical constant statements and logical variable statements re-
spectively. These statements differ from those in Morgan’s calculus, because
they do not introduce bindings for program variables. Nonetheless, we will
put our logical constants to the same use as Morgan’s [73]: to ‘remember’
the initial value of program variables and the previous values of variant func-
tions for recursion and loops. At the end of this section we discuss our store
statement, which remembers the value of a state. We will make use of the
store statement in defining variable localisation in Chapter 5.

We have unbounded and bounded versions of the logical constant state-
ment: con z. ¢(z) and cony z:T. ¢(z); and the logical variable statement:
var z. ¢(z) and vary z:T. ¢(z). In the unbounded versions, z is free to take
on any value, whereas in the bounded versions,  must take on some value in
the set of values T'. As we are using a shallow embedding, we can appeal to
the binding facilities available in our underlying logic—we will identify value
binding statements in the refinement language with value-binding terms in
Isabelle/ZF.

For compound statements such as sequential composition, we didn’t have
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to explicitly supply the state type, as we could ‘extract’ it given assumptions
about sub-statements. It would be nice to do the same here, but instead of
the sub-component being a statement, it is an indexed family of statements.
For unbounded quantification, instead of using the ordinary domain operator,
we can define an indexed domain operator, Dom(c) and use that to extract
the state type from the family of statements. In order to define bounded
value quantifiers, we could try to similarly define a bounded lifted domain
operator. However, this would extract a sensible state type only when the
bounding set 7' is non-empty. This would introduce somewhat artificial side-
conditions for theorems about bounded value quantifiers. So, for bounded
value quantifiers, we explicitly indicate the state type.

Bounded and unbounded value quantifiers are similar. If ¢(z) : Py for
any z, then we have:

conz. {{s:A| z: T}} 5¢(x) =cony z:T. ¢()

varz. ({s:A | 7: T}),—;c(z) =vary o:T. c(z)
Our definitions for bounded value quantifiers are equivalent to Pratten’s
demonic and angelic choice statements [88]. Bounded value quantifiers are

equivalent to the generalised angelic or demonic choice of an indexed family
of statements. If ¢(z) : P4 p for any z : T, then we have:

cong z: T. c(z) = Lda{ec(z). z: T}

varg 2: T. c(z) = [ 1a{c(z). z: T}

We can use logical constants to relate the fixed and free specification
statements. Here the logical constant fixes the state to be the same in the
pre-condition and the post-condition of the free specification statement:

P, Ql, = conx.T[{s:A| s=xANs€E P}, {s:A| s=zNscQ},

We can also define both relational assertion and non-deterministic assign-
ment in terms of logical constants and specification statements, as follows:
i=p0.R(i,0) = conz. "[{i:A| 2:AAR(,z)}, {0:A] o =1},

it=a0.R(i,0) = conz. "[{i:A| z=i}, {0:4| R(z,0)}],

Finally, we introduce the definition of our store statement, which remem-
bers the value of the state in which it is executed. It can be defined in two
equivalent ways, as follows:

storeq 7. c(z) = conz. {{s:A| s=1z}},;5¢c()
storey z. c(z) = varz. ({s: 4| s =1z}),—;c(z)
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As we would expect, a skip statement is just like a program which re-
members the initial state, executes any normal statement, and then restores
the initial state. Formally, for a strict and terminating statement c : Py, we
have:

storeq z. c;(As:A.z), = Skipy

3.3.4 Recursion and Loops

Recursion and looping constructs play an important role in any programming
language. The most primitive recursion construct in the refinement calcu-
lus is the recursion block req4 N. F(N)er, which executes the statement F,
recursing on N. Recursion blocks are not usually seen as statements in pro-
gramming languages. However, we will use them in the analysis of recursive
procedures in Chapter 6, and here we use them in the definition of while-do
loops. Our definitions and theory of recursion follow Agerholm [2] and the
Refinement Calculator project [102].

We can show that recursion blocks are least fixed points. That is, for
regular,(F) we have: F(rea(F)er) = rea(F)er. Regular statements are
those whose bodies are well-typed and preserve refinement. Regularity is
are formally defined in Appendix B. All atomic monotonic set transformers
are regular, and all of our compound statements preserve regularity. The
fixed point theorem leads to the proof of a recursion theorem using well-
founded induction. For regular,(F), ¢ : M4, variant function V' well-typed
given invariant I, i.e. Vs:A.I(s) = V(s): T, and relation R : P(T x T)
well-founded on 7', we have:

Vo:T. {{s:A| I(s) A V(s)=a}},5¢ T F({{s:A| I(s) AR(V(s),7)}};¢)

Vo:T. {{s:A| I(s) A V(s)=xz}},5¢ C rea(F)er

This recursion theorem leads directly to the recursion introduction rule de-
scribed below, and refinement monotonicity theorems for recursion blocks
presented in Appendix C.

We can define while-do statements in terms of recursion in the usual way,
leaving us with the following equality. When ¢ : Py,

while g do c od = rey N. if gthen c; N else Skip 4 fier

We can prove that while-do loops are a ‘lifted’ form of Isabelle/ZF’s standard
least fixed point operator. For g : P A and ¢ : M4, we have:

while g do c od =X q:PA.lfp, N. (9N N)U((A—g)Ngq))
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As we would expect, a loop with a false guard won’t start, and is equal to the
skip statement. Also, a loop with a true guard won’t terminate, and hence
is equivalent to an aborting program. That is, for a,b : M, and strict(b),
we have:

while @ do a od = Skip, while A do b od = Abort,4

A general form of loop introduction can be expressed in terms of a Hoare
correctness triple [47], and proved using well-founded induction. For ¢ : My,
variant function V well typed given invariant I, ie. Vs:A. I(s) = V(s): T,
and relation R : P(T x T') well-founded on T we have:

Vo:X. {{s:A] I(s) ANG(s) A V(s)=a}} e {{s:A]| I(s) A R(V(s),z)}}
{{s:A| I(s)}} while {s: 4| G(s)} do cod {{s:A| I(s) A= G(s)}}

This theorem is used to prove all of the while-do loop introduction refinement
law described in Chapter 4, and the refinement monotonicity theorem listed
in Appendix C.

Recursion Interfaces

The raw recursion block captures the semantics of recursion, but it is not
a suitable basis for program development. To apply the recursion theorem
we would need to introduce the final code of the recursion in one fell swoop.
The raw recursion block does allow us to refine a specification statement
to a recursion block containing essentially the same specification statement.
However, the refinement monotonicity theorem for raw recursion blocks does
not let us know that suitable instances of the original specification statement
can be refined to a recursive call.

However, we can use assertion statements to remember this information.
The refinement theory and its assertion language are expressed in a uni-
form logic, and so mixing them presents us with no meta-logical difficulties.
For example, we can prove the following general recursion introduction the-
orem. For b : My, variant function V well-typed under invariant I, i.e.
Vs:A.I(s) = V(s): T over a relation R well-founded on T', we have:

{{s:A] 1()}} 45D
C
reqN.conyg z: 7.
(A {{s:A] R(V(5),2) AT(s)}} 450 © N A V(s)=12}} 450
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That is, the assertion statement inside the logical constant statement
‘remembers’ that we can refine instances of our interface which reduce the
variant function V into recursive calls N. The underscore in the context-
dependent assertion statement indicates that it is asserting a proposition
which is independent of the value of the state at that point.

This leads us to define the following interfaced recursion block, which
encapsulates this contextual information.

req 2:T,N JI(z). c(z,N)er =
rea N.cong o:T. {{_:A| I(z) T N}},;c(z,N)er
The following refinement monotonicity theorem for this construct lets us
do step-wise refinement on the body of the recursion block by providing us
with extra context letting us refine the interface to a recursive call.
Vi: TN:My. I(z) E N = a(z,N) C b(z,N)
rea z:T,N JI(z). a(z,N)er T req z:T,N J1I(z). b(z,N)er
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Chapter 4

Lifting Sets to Predicates

We define a ‘lifted’ version of the language presented in the previous chapter.
We lift sets representing expressions to functions in the meta-logic, and have
statements pass abstracted state types to their subcomponents. These lifting
techniques allow us to preserve the underlying expressiveness of untyped set
theory, but provide us with many of the benefits of an implicitly typed logic.
We also list a collection of refinement laws at the level of the lifted language.

The shallow embedding of the weakest precondition semantics by Ager-
holm [2] and the Refinement Calculator project [102] is done in higher-order
logic. Our work is done in the untyped set theory of Isabelle/ZF for reasons
that will be outlined in Chapter 5. Working in untyped set theory provides an
extra overhead above working in an implicitly typed theory such as higher-
order logic. In untyped set theory we must in effect provide explicit type
information to defined operators. This chapter describes a technique to ame-
liorate this explicit typing burden by appealing to a higher-order meta-logic,
such as that provided by Isabelle/ZF.

4.1 Predicate Transformers: Lift to Meta-Logic

We use three mechanisms to ameliorate the added burden of explicit typing.
The first has been described already in Chapter 3: when defining statements,
extract the state type from the structure of sub-components. The other two
mechanisms are described below, and essentially depend on creating a new
‘lifted’ language. We will push as much as possible of the representation of set
transformer statements into the meta-logical structure of the lifted language.
Although ZF does not admit higher-order functions, we can define higher-
order operators within Isabelle/ZF’s meta-logic. This allows us to define
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statements as meta-level type-passing operators, and also to use predicates
on states to represent conditions.

4.1.1 Abstracting the State Type

For statements in the set transformer language, we had to explicitly denote
the state type. This burden increases with the composition of statements:
we must repeatedly mention the state type for every atomic sub-statement.
We can reduce this burden by using a technique somewhat similar to the
monadic style of functional programming. We define a language of lifted
statements as higher-order operators in Isabelle’s meta-logic. The state type
is mentioned once at the top of a lifted statement, and is implicitly passed
down to its sub-statements.

The definitions of lifted skip and sequential composition statements are
as follows:

Skip = M\ A.Skip,
a;b = MNA.a(A);b(A)

We engage in a slight abuse of notation here by overloading the names of
conventional and lifted statements; context will normally distinguish them.
The lambda in these definitions is Isabelle’s meta-logical abstraction. The
lifted skip statement takes a set which will form the state type of the con-
ventional skip statement, and the sequential composition statement takes a
set which it passes to its sub-statements. We have thus restricted our atten-
tion to homogeneous predicate transformers, but that suits our purposes of
providing a simple ‘user-level’ theory of refinement.

We usually introduce the state type once at the top of an expression.
Lifted equality and refinement is defined as follows:

a=2b = a(4)
CLEAb

= b(A)
C b(4A)

IR
=
=

For example, compare Skip =4 Skip; Skip to its equivalent in set transformer
statement: Skip, = Skip 4; Skip 4. This mechanism provides a great economy
of notation in the presentation of complex programs, and recovers most of
the benefits of implicit typing as seen in higher-order logic.

4.1.2 Lifting Sets to Functions and Predicates

Many statements defined in this chapter have operands which we intuitively
think of as expressions or conditions, but which are represented as sets. For
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example, we use sets of pairs of states to represent the state-valued expression
in the state assignment statement, and we use sets of states to represent the
Boolean expression in the guard of the alternation statement.

We can define ‘lifted’” versions of these statements which instead of rep-
resenting these operands as sets, use meta-logical predicates or functions.
To use predicates on states instead of sets of states, we can appeal to Is-
abelle/ZF’s set comprehension {z : A | P(z)} to construct the subset of
A whose elements satisfy the characteristic function P. Similarly, to use
meta-level functions instead of object-level functions we can appeal to Is-
abelle/ZF’s bounded lambda quantification Az : A. F(z) to construct a set
of pairs (z, F(z)) for z in A.

Thus our definitions of lifted state-assignment and alternation are as fol-
lows:

(FYy = MNA.(\z:A.F(2)),
ifgthenaelsebfi = NA.if {z:A| g(z)}then a(A)else b(A) fi

In these definitions we also abstract the state type, as was seen for the lifted
skip and sequential composition statements.

4.1.3 The Lifted Language

The definitions of our lifted language follow the general scheme presented
above, and appear in Appendix B. We do not lift fixed specification state-
ments, as they are not useful for our refinement methodology—we want to
derive programs that will effect some change in the program state! Given
this, we write lifted free specification statements as [P, @Q].

4.2 Refinement Laws

We present a set of ‘refinement laws’ using this lifted language. Refinement
laws are theorems which support a specific style of refinement methodology.
Here we support a style of refinement similar to that described by Morgan
[73]. To use this approach, we begin with a specification statement, which we
transform into a compound statement whose sub-statements are specification
statements. These are in turn progressively transformed until final code is
reached. The refinement laws described here allow us to use the window
inference style of reasoning described in Chapter 2.
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4.2.1 Refinement as Transformation

In order to transform a statement using window inference, we need to know
that refinement is a transitive relation. Refinement is a partial order on
predicate transformers. For a, b : M 4 we have:

a Eab DBy c a Eab bEya

cCygqec
a Ty e a—=1>b

4.2.2 Refinement in Context

Given that we have refined a specification statement to a compound state-
ment containing new specification statements, we want to be able to refine the
new sub-statements in context. Theorems which show that compound state-
ments are refinement-monotonic justify this. These refinement-monotonicity
theorems correspond to window opening rules, and are shown in Appendix

C.

4.2.3 Refinement of Specifications

A specification statement can be refined either into an atomic statement,
or into a compound statement containing specification statements. These
refinement laws correspond to window transformation rules, and are listed
below.

Introduce Skip

We can transform a specification statement to a skip statement if the pre-
condition implies the post-condition:

Vs:A.P(s) = Q(s)
[Pa Q] EA Skip

Introduce Sequential Composition

We can transform a specification statement to the sequential composition of
two specification statements which share an arbitrary mid-condition:

[P, R] Ea [P, Q;[Q, R]

50



Weaken Pre-Condition, Strengthen Post-Condition

We can transform a specification statement into another specification state-
ment, by either weakening the pre-condition or strengthening the post-condition.
We are left with the proof obligation that the new condition is implied by,
or implies (respectively), the old condition:

Vs:A.P(s)= P'(s) (Fs.P(s)) = (Vs:A.Q'(s) = Q(s))
[P, Q] Ca [P, Q] [P, Q] Ca [P, Q]

Introduce State Assignment

We can transform a specification statement into a state assignment state-
ment, if the the state function will give us a state satisfying the post-
condition:

Vs:A. P(s) = Q(F(s))

Introduce Alternation

We can transform a specification statement to an alternation statement
whose branches are specification statements. The guard is preserved in the
pre-condition of the first branch, and the negation of the guard is preserved
in the pre-condition of the second branch:

[P, Q] Ca if G then
| As.G(s) A P(s), Q]
] As.— G(s) A P(s), Q]

Introduce While-Do Loop

We can transform a specification statement to a while-do loop whose body is a
specification statement. The general rule for arbitrary well-founded relations
R on X is as follows:

Vs:A. P(s) = 1(s)
Vs:A. I(s) A G(s) = ( )
Vs:A.I(s)= V(s): X

[P, Q] T, while G do
; con z:X.[As.G(s) NI(s) AN V(s)=uxz, As.I(s) ANR(V(s),z)]
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For the special case of the natural numbers, the rule is as follows:

Vs:A. P(s) = I(s)
Vs:A. I(s)N— G(s) = ( )
Vs:A. I(s)= V(s):N

[P, Q] T, while G do
; con z:N. [As. G(s) NI(s) AN V(s)=uz, Xs.I(s) A V(s) < z)]

Introduce Interfaced Recursion Block

We can transform a specification statement to a recursion statement whose
body is a (essentially the same) specification statement:

The general rule for an arbitrary well-founded relation R on T, with a
variant function well-typed (on s : A satisfying P(s)) V(s) : T is as follows:

[P, Q] T4 rez:T,N J[As.R(V(s),z) A P(s), Q].
As. V(s) =z A P(s), Q]

The rule for a natural number-typed variant function (again, for any s : A
satisfying P(s) we must have V(s) : N) is as follows:

[P, Q] T4 rexz:NJN J[As. V(s) <z A P(s), Q.
As. V(s) =z A P(s), Q]

Remove Assertion

At the end of a development we can remove any remaining assertion state-
ments. We can refine assertion statements to skip as follows. As skip is a
left and right identity of sequential composition, it can itself be reduced:

{P} E4 Skip

Remove Logical Constant

At the end of a development we can remove any logical constant statements
which no longer bind variables in the program. For ¢ : M 4 (¢ not dependent
on v) we have:

con v. c =4 ¢
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Reduce Interfaced Recursion Block

When an interfaced recursion block does not contain any instances of the
logical constant which fixes the variant function, then we can transform it to
a standard recursion block. In effect, we refine away the assertion and the
free logical constant statement. i.e. if F(z): My for any z : My, then we
have:

rex:T,N Jc(z). F(N)er T4 re N. F(N)er

23
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Chapter 5

Representing Program
Variables

We extend our mechanisation of the refinement calculus to include state-
ments which use program variables. The refinement calculus presented in
Chapter 3 was defined in terms of a completely general state type. In this
chapter we specialise our state type to allow us to represent program vari-
ables and their values. We can re-use the general framework established in
Chapter 3 in this new setting.

Variable names are central to any programming language. Constructs
common in programming languages include variable assignment for updating
the value of a program variable, local blocks for declaring a new locally-scoped
program variable of a particular type, and formal parameter declarations for
procedures. Refinement languages often include other constructs, such as
the framed specification statement [71], where the frame is a set of program
variables which are allowed to change. It is more difficult to represent the
semantics of refinement languages than programming languages. During pro-
gram refinement, a developer may want to introduce a local variable whose
values will come from some new mathematical set of values. In advance of
performing a refinement we may not know which abstract types we will use,
and so our type universe can’t be fixed ahead of time.

5.1 State Representation
This section reviews progressively more sophisticated approaches for repre-

senting state types, and considers their suitability for representing state types
in a mechanisation of the refinement calculus.
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5.1.1 Review of State Representations
Variable Names to Numbers

The classic way to represent the states of toy imperative programming lan-
guages is by functions of the form V — N [36]. One can use either par-
tial functions where the domain of the state is exactly the set of declared
variables in scope, or total functions where we under-specify the values of
variables which are out of scope.

The main problem with this approach is that even programming lan-
guages usually have a richer type universe than the natural numbers! In
principle we could use Godel numbering to represent any finitely specifiable
value, but doing that would neither be perspicuous nor readily mechanisable.
Moreover program refinement languages may use infinitely large abstract val-
ues, and so this approach is not suitable for our purposes.

Variable Names to Universal Type

It would be appealing to represent states as functions of the form V — U,
where U is the universal type. However, most widely accepted logics do not
admit such types!

Variable Names to Type Sum

To have a more expressive type universe, we might construct a range type
consisting of the sum of types which we might use. For example, we might
define a fixed type ‘universe’ 7 for a state type ¥V — 7 as follows:

7 == Nat{N)) | NatList{(Nseq)) | NatFun{N — N))

This style of state representation, while fine for programming languages, is
not entirely suitable for refinement languages, because we don’t know ahead
of time all of the types which we might use in a refinement.

Variable Names to a Progressively Defined Sum Type

The previous approach is unsuitable only because in the course of performing
a refinement, we might choose to introduce a type which we have not already
included in our type sum. One possible fix for this problem would be to
redefine the type sum to include any new type, and then to either lift or
replay the development with the new type sum. With a certain amount
of ‘hand-waving’, this approach has some appeal in principle. However it
would be cumbersome to deal with this hand-waving explicitly in a practical
mechanisation.
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Constructors of a Progressively Defined Data Type

A technique similar to the one above has been descried, based in the HOL
theorem prover [18]. Here the state type is not represented by a map from
variables to values, but rather as a datatype whose constructors represent
program variables. This requires that the datatype be redefined upon enter-
ing every local block, regardless of whether the new local type has been seen
before. Hence it is not a suitable basis for a practical refinement tool.

Polymorphism and Polymorphic Products

Although most type theories do not provide a universal type, many type
theories do provide polymorphic types, which can be instantiated to any
particular type. A polymorphic product represents the pairing of two values
of an arbitrary type. Nesting these pairings allows us to represent finite
vectors of arbitrarily typed values. So, one could represent a state type with
three variables by a three-tuple with type (a x (3 x v)). This approach to
representing states was first mechanised by Agerholm [2] for use in program
verification,

This mechanism allows us to represent state types with arbitrarily typed
values. However, it does not allow us to represent variable names! More
precisely, in this scheme there is no type of all variable names. ‘Variables’
here are projection functions from the current state type to an individual
value. Just as there is no type of all types, so is there no type of all projection
functions. Tuple positions, as bound variables, may have ‘names’ in the logic,
but these do not distinguish between alpha-equivalent terms. For example,
in the Refinement Calculator, the following two assignment statements are
equal, even though the ‘name’ of the state variable varies:

(assign(Aa. 1)) = (assign(Ab. 1))

This mechanism does not allow us to represent normal properties of vari-
ables within our logic because it lacks variable names. For example, when a
local block introduces a new variable, it defines the internal type by prepend-
ing the new local type to the external type sum. However, because program
variables are identified with tuple positions rather than names, block state-
ments don’t hide variables declared in higher scopes. This fails to capture
the normal programming language abstraction mechanism of variable name
scoping. To represent single program variables, tricks can be played with
let-expressions to bind specific projection functions to scoped let-bound vari-
ables. However, this still does not let us represent sets of variables, and
so for example we can’t give a uniform definition for framed specification
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statements. Another limitation with this scheme is seen with parameterised
procedure calls: for a given procedure, every differently typed calling context
requires a different parameterisation mapping. This means we can’t develop
general procedure call rules, but must, as is seen in [101], re-prove them for
every procedure and each of its calling state types.

Variable Names to Dependent Type

The final approach which we consider (and the one which we will adopt)
is to represent state types as dependently typed partial or total functions
of the form II,.y. 7(v). The family of types 7 is a total meta-level function.
Using dependent functions has the benefit of allowing us to represent variable
names within the logic, and also allows us a free choice of types for program
variables. This style of representation is available in expressive type theories,
and in untyped logics such as Isabelle/ZF. Partial dependent functions will
under-specify the typing 7 for program variables not in the domain, and total
dependent functions under-specify not only the typing 7 but also the value
of program variables not under consideration.

Kleymann [56] reports a similar representation in the context of machine-
checked proofs of soundness and completeness results for program verifica-
tion. Both Pratten [88] and von Wright [100] use a seemingly similar rep-
resentation. They consider states a function from program variables z to a
typing function D,. However, they take D to be fixed. This is not appro-
priate when, for example, local blocks can change the type of a variable in
scope. Our statements are defined over state types. This allows us to change
the state type under consideration, for example when we enter a local block,
or when we call a parameterised procedure.

5.1.2 Fixing Variables for a State Representation

In this thesis, we represent the state type as a total dependent function
[I,.y.7(v) where 7 is a (meta-level) variable-name indexed family of types.

5.2 Statements

This section presents the definitions of the set-transformer semantics for
statements which use program variables. Again, we list theorems which pro-
vide a measure of validation to support our definitions. The definitions for
the set-transformer semantics of statements using program variables appears
in Appendix B. Theorems stating that these definitions are indeed (mono-
tonic) set-transformers appear in Appendix C.

58



5.2.1 Atomic Statements

The atomic statements which we present are variable choice, single-variable
assignment, multiple-variable assignment, and framed specification state-
ments. They are related to the chaos, state assignment and specification
statements seen in Chapter 3, but use program variables to give a finer grain
of control over changes to the state.

Choose: Variable Chaos

The choose statement acts like chaos on a set of variables, leaving other
variables unchanged. This can be seen by expressing the choose statement
as relational non-deterministic assignment as follows!:

Choose(w);, = 0 :=m, 7 i. 0 dsub w = i dsub w

For the special cases where the set of variables is empty or universal, the
choose statement acts like skip or chaos respectively:

Choose(@) , = Skipy4 Choose( V), = Chaosy, 7

We won’t use the choose statement within our user-level theory of refine-
ment. However, it is an invaluable component in our construction of local

blocks.

Single-Variable Assignment

Single-variable assignment updates the value of a single program variable
to the value of an expression computed in the initial state. Our defini-
tion of single-variable assignment strongly resembles our definition of state
assignment. Single-variable assignment can be expressed in terms of state
assignment, i.e. (for £ : A — X) we have:

vi=4 E=(\s:A.s[E's/v]),

That single-variable assignment updates only v can be seen by re-expressing
it in terms of relational non-deterministic assignment. For E : 11y T — T'(v)
and v : V, we have:

vi=n, 7 E = o:=p,ri.o'v=~FE9NAodsub{v}=1idsub{v}

IThe operator dsub is relational domain subtraction, as indicated in Appendix A.

29



Multiple-Variable Assignment

Multiple-variable assignment is like single-variable assignment, but can as-
sign values to many variables in parallel. A multiple-variable assignment
(M), p contains an expression M which takes a state and returns a new
set of variable/value pairs which will override variables in the initial state.

It resembles state assignment, and specialises to it when it assigns to every
variable. When M : I[1y X — Il Y, we have the following:

<H>HVY,HVX = <M>HVY

When a multiple-variable assignment affects only a singleton variable, it
is equivalent to the single-variable assignment statement. When FE represents
an expression from a state type B, we have:

(As:B. {(v,E‘sﬁ)A,B =v:=4 F

Framed Specifications

In Chapter 3, we defined fixed and free specification statements, which (re-
spectively) did not change the state, and could change the state in any man-
ner whatsoever. Where states are functions from variables to values, this
means fixed specification statements may not change the value of any pro-
gram variable, and free specification statements may change the value of
any program variable. We can now define a framed specification statement
w: [P, @], whose frame w contains a set of program variables which are
allowed to be modified. When the frame is either empty or universal, a
framed specification statement is equivalent to (respectively) the fixed or
free specification statement. For example, we have (in the latter case when

Q:PIly7):
g [Pa Q]A = L[Pa Q]A V: [Pa Q]Hvr :T[Pa Q]HvT

We can use a logical constant to ‘hold steady’ the value of a program
variable in the frame of a framed specification statement. Alternatively,
instead of holding steady one program variable, we can fix the entire state,
thus expressing framed specification in terms of free specification. For a v in
w a subset of V, we have:

w—{v} [P, Qu,, =cone w:[{s:P| e=sv}, {5:Q]| e=s}]
w [P, Qlu,» =conz. "[{s:Tly7]| s€PAz=sdsubuw},
{s:Ty7 | s € Q Az =sdsubw}lm,,

Just as we could express chaos in terms of free specification, so can we

express the choose statement in terms of framed specification. Similarly, we

IIyr
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can express framed specification in terms of assertion and guarding interposed
by the choose statement. Formally, we have:

Choose(w), = w:[A4, A],
w: [P, Q] {P} 45 Choose(w) 45 (@) ,—

5.2.2 Compound Statements: Localisation

In this section we describe compound statements that make use of program
variables. We will first consider single and multiple variable declaration
blocks. We also describe parameterisation, which substitutes for program
variables used as formal parameters. However, we postpone our description
of parameter declaration until Chapter 6. These statements are defined in a
similar way:

1. store the initial state,

2. initialise the new values for the localised variable(s),

3. execute the localised sub-statement, and

4. finally restore the original values of the localised variable(s).

Our variable localisation statements are homogeneous set transformers which
contain a differently-typed homogeneous set transformer. Our initialisation
and finalisation stages are therefore heterogeneous set transformers. Our
development of variable localisation is, to some extent, based on Pratten’s
unmechanised formalisation of local variables [88].

Single-Variable Blocks

A single-variable block begin, v. ¢ end executes the statement c¢ in an ini-
tial state which has an unknown value for the program variable v. We
model this initialisation by demonically setting the initial value of v using
Choose({v}) 4. The finalisation simply restores the original value of v with
a state assignment statement. We have defined blocks such that when ¢ : Pg,
we have the following equality:

begin, v. c end = store, i. Choose({v}) 4¢3 Az:B.z["" /),
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Multiple-Variable Blocks

Multiple-variable blocks are a straight-forward generalisation of single-variable
blocks above where we declare a set of program variables instead of a single
program variable. When ¢ : Py, we have the following equality:

begin, W. c end = storey i. Choose(w) 45 ¢; (A z:B.z @ (i dres w)),

Trivially, multiple-variable blocks which declare a single variable are the
same as single-variable blocks:

begin 4 m cend = beging v. c end

Variable Parameterisation

It is standard in theories of the refinement calculus to separate the treat-
ment of parameterisation and procedure call [70]. We consider procedure
calls and formal parameter declaration in Chapter 6 but here describe the
semantics underlying parameterisation. Presentations of the refinement cal-
culus typically consider three different kinds of parameter declaration: value,
result, and value-result [73, 88]. Procedures with multiple parameters must
be modelled with a composition of these individual rules. However, this is a
semantically unacceptable treatment: the evaluation of each parameter argu-
ment should be done in the same calling state, rather than being progressively
updated by each parameter evaluation.

We define a generic parameterisation statement Paramy(c, I, F') which
represents a parameterised call to ¢ from a calling type A. Like a multiple-
variable assignment statement, parameterisation updates the value of many
variables in parallel. The variables to be updated are contained in the struc-
ture of the initialisation and finalisation arguments / and F. These com-
ponents represent the interpretation of the actual parameters in the context
of some formal parameter declaration. The following equality holds. When
C: PB,

Param(c, I, F) =
storeq 4. Chaosp 45 (As:B.s® I(i))g5c; (As:B.i® F(s)),

Parameterisation resembles the multiple-variable block statement, except for
two important differences. First, parameterisation uses the chaos statement
to help establish the initial state. This prevents us from using global vari-
ables within procedure bodies. This restriction was introduced to allow us to
represent procedure calls from various state types. The localised statement

62



c is defined only at the declaration state type B, but may be called from
any external state type A. Additionally, references to variables outside the
parameter list would be dynamically bound to variable names in scope at
run-time, rather than statically bound to variables in scope at declaration
time. This would be inconsistent with the semantics of most imperative pro-
gramming languages. Second, at finalisation we don’t simply restore values
of localised variables. We restore the entire initial state except for variables
carried in the finalisation expression F. Thus we will be able to change
the value of variables given as actual parameters to result or value-result
parameter declarations.
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Chapter 6

Lifting with Program Variables

In the previous chapter we fixed the state type in the set transformer seman-
tics so that we could represent program variables. We can now redefine our
lifted language, in order to encapsulate more of this state structure. We de-
scribe our representation of parameter declaration, and interfaced procedures
and recursive procedures. Finally, we list refinement laws for the statements
introduced in this chapter.

6.1 Using State Structure in Lifting

In Chapter 4, we developed a lifted language of type-passing predicate trans-
formers in order to reduce the burden of explicitly annotating set trans-
formers with their state-types. In the previous chapter we specialised the
state-type to be a dependent function type with a fixed domain. We can
revisit our approach to abstracting the state-type to take advantage of this
extra structure. Instead of using an arbitrary set of variable names V', we
fix them to a constant non-empty set of variable names V. For a typing T,
the state type S, is defined as follows:

ST = HVT

Our type of variable names V is a constant, and so instead of passing sets
II,,7 representing the state-type, we will pass only the typings 7. Although
7 is not a set, defining a lifted language over a family of types presents no
problem for Isabelle/ZF’s higher-order meta-logic. In a manner similar to
our previous lifted language, we introduce typings once at the top of an
expression, and implicitly pass them to any component sub-statements. For
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example, we can define lifted equality and refinement as follows:

a(t) = b(7)
a(t) & b(7)

a=,0b
a T, b

~
~

We can define the lifted skip, sequential composition, state assignment and
alternation statements as follows. Note that we can reconstruct the state
type S, from the typing 7:
Skip
a3 b
(F)

if g then a else b fi

AT. Skipg_

AT.a(T); b(T)

AT ANS S, F(s)) s

AT.if {5:S, | g(s)} then a(7) else b(7) fi

11

I

Other lifted statements are defined similarly. The definitions of all these
lifted statements appear in Appendix B. We will take as read the replay, in
this modified setting, of work presented in Chapter 4.

6.2 Lifting Blocks

There are no expressions or conditions in our block statements, so lifting
them will mostly be a matter of abstracting the typing. However, the state
type inside a block will in general be different to the state type outside the
block. Hence, we cannot simply pass the external typing to the body of the
block. For each local variable we will require a type declaration. We will use
these type declarations to modify the typing which we implicitly pass to the
body of the block.

6.2.1 Lifting Single-Variable Blocks

Given an external typing 7 and a single-variable block which declares a local
variable v of type T, we will pass a modified typing 7[T/v] to the body of
the block, as follows:

begin v: T. cend = A7.beging v. ¢(7[T/v]) end
Typing substitution is defined as follows:
T[T/v] = Aw.if(w=wv,T,7(w))

As we would expect, single-variable blocks are monotonic predicate trans-
formers:
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C: MT[T/U}
begin v: T. cend : M,

The effect of the modified typing environment can be seen in the following
refinement monotonicity theorem:
a: MT[X/U} b: MT[X/U} o Crix/v) b
begin v : X. a end C, begin v: X. b end

Whenever we refine a block, we use these theorems to calculate the inter-
nal typing for the block.

6.2.2 Lifting Multiple-Variable Blocks

For multiple-variable blocks, we can declare a set of variables and their new
types. We will model these declarations as a function from the local variables
to their types. Hence the domain of this set will be the set of names of the
local variables. Our definition of lifted multiple-variable blocks is as follows:

begin D. cend = \7.beging dom(DY. ¢(r B D) end

Our syntax here for lifted multiple-variable blocks is for expository purposes
overloaded with the syntax for lifted single-variable blocks.
The typing overriding operator H is defined as follows:

THS = Mw.if(w € dom(S), S‘w,7(w))

Although we define multiple-variable blocks in terms of this typing overriding,
we will always resolve concrete instances to typing substitutions, using the
theorems below. (For the second theorem we need to know that {(v, T)}US
is a function, i.e. that the variable names are distinct.)

rBo=r 7tB{(v,T)}US)=(rBS)[T/]

As we would expect, multiple-variable blocks are monotonic predicate
transformers:
c: M.mp
begin D. ¢ end : M.,

The effect of the modified typing environment can be seen in the following
refinement monotonicity theorems:

a: MTEED b: MTEED a ETED b
begin D. a end C, begin D. b end

Whenever we refine a block, we use these theorems to calculate the inter-
nal typing for the block.
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6.3 Parameterised Procedures

Our representation of parameterised procedures will bring together many of
the strands of work in this thesis. As is common in the refinement literature
[70], we develop procedures separately from parameterisation. Parameterised
procedures are lifted set transformers on a state type representing program
variables. Like the recursion blocks discussed in Chapter 4, we will associate
interfaces with our procedures, so that we can support a step-wise refinement
methodology. Also, like the variable blocks discussed earlier in this chapter,
the body of a procedure has a different state type to its calling type. A
procedure body is defined at only one state type, but the procedure can be
called from many different state types. We will use parameter declaration
information to create a declaration typing to pass to calls of a parameterised
statement. This declaration typing is fixed per procedure, and ignores the
calling type. This restriction means that we do not model global variables.
An extension to the language presented in this thesis could support global
variables by introducing a mechanism for explicitly listing global variables
used in a procedure.

6.3.1 Lifting Parameterisation

Lifting the parameterisation statement is slightly different to lifting other
statements. Because a procedure body is defined at its declaration type and
not its calling type, we must pass the declaration type to a parameterised
statement. So, we define the lifted parameterisation statement as follows:

PARAM(c,S,I,F) = Xt.Paramg_(¢(S5),I,F)

6.3.2 Parameter Declarations

The PARAM(c, S, I, F) statement is a general form of parameterisation. It
uses initialisation and finalisation expressions embodying parameter declara-
tions which have already been resolved. We turn now to consider how these
expressions are constructed.

Formal and Actual Argument Syntax

We consider three types of parameterisation common in the refinement liter-
ature: value, result, and value-result [70]. We define a collection of uninter-
preted constants to use as syntactic abbreviations for declaring each kind of
formal parameter declaration: value v : T, result v : T and valueresult v : T'.
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The formal arguments of a procedure are represented by a list of these formal
parameters.

An actual parameter is represented by the operator Arg a, where a is a
meta-level function representing an expression. For value parameters, this
will be a normal expression, and for result and value-result parameters, this
will be a constant expression returning a program variable. The actual ar-
guments to a procedure are represented by a list of these actual parameters.

Interpreting Parameter Declarations

We define three operators for interpreting lists of parameter declarations D
given a typing at declaration 7 and actual argument list a: a declaration typ-
ing operator Tp ,, and initialisation and finalisation operators Ip , and Fp ,.
Parameterised statements c are then interpreted as PARAM(¢, Tp +,1p 0, Fp.a)-

Tp - determines the typing internal to the declaration. Where decl is any
of our three forms of formal parameter declaration, we have:

Ty, = 7
T 717 /0]

IR

T(decl v:T )zl

Ip,, determines the initialisation expression. It takes the state s outside
the procedure call, so that actual arguments can be evaluated. Value param-
eters evaluate an expression which is substituted for the formal parameter,
and value-result parameters take the value of variable given as the actual
argument and substitute it for the formal parameter:

]I[]:U = A\s.@
]I(value v:T::)dl,(Arg a)::al = As. {<U, 0(8)>} U ]Idl,al(s)
]I(result v:T:)dl,(Arg a)::al = ]Idl,al

I

As.{{v,s'a(s))} ULy als)

]I(valueresult v:T::)dl,(Arg a)::al

Fp,, determines the finalisation expression. It takes a state s outside the
procedure call, so that actual variable arguments can be updated. Result
and value-result parameters update the value of the variable given as the
actual argument with the value of the formal parameter:

IF[],[] = As. @

Fai,a

As.{(a(s),sv)} UFqa(s)
As.{{a(s),s'v)} UFq u(s)

[

IF(value v:Ty::)dl,(Arg a)::al

I

II-?(result v:Ty::)dl,(Arg a)::al

[

]F(valueresult v:Ty::)dl,(Arg a)::al
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For example, assume we have a simple procedure declared (at a typing
7) as follows:

-~

procedure P([value a: A, result b: B, valueresult ¢ : C])
Body

Here a, b and c¢ are variables in V. Now, consider the following procedure
call:

P([Arg As.a(s), Arg Ns. 3, Arg As.])

Here « is an expression of type A, and [, and ~ are program variables in
VY, with s : B and s‘y : C. This procedure call can be expanded to the
following parameterised statement:

PARAM(Body, T[C/c][B/b][A/a], A s.{a,a(s)), (¢, sv), As. (B, s'D), (7, s‘c))

Note that the value parameters a and c¢ are updated in the initialisation
expression, and the result arguments 3 and v are updated in the finalisation
expression. In an actual program refinement this expanded form of procedure
call need not be seen by the developer, as it is built into the definition of
procedure declaration.

6.3.3 Interfaced Procedures

A non-recursive procedure P with an implementation B which is declared
for a calling context C'(P) is like the let binding let P = Bin C(P). In our
refinement methodology, we want to introduce procedures by refining some
statement C to let P = [in C'. Then when refining C, we can refine in-
stances of the procedure interface I to calls to P. However, at some time, we
might refine I to B. When later refining C', we would still like to be able to re-
fine instances of the interface I into calls to P. However, a simple let-binding
is not sufficient to support this methodology. This is similar to the limitations
of the raw recursion block discussed in Chapter 3. We solve this problem in
a similar way: we add an interface I to the syntax of our procedures and
remember (with an assertion statement) that B is an implementation of I.
Thus, our procedures are more like: let P = Bin{ A_.I T B}; C(P). This
would allow us, when refining C', to replace instances of I with calls to P.
The underscore _ above highlights the fact that the asserted context is not
dependent on the value of the state. This allows us to extract this condition
as a purely logical fact in the context of C'(P).

Our procedures are actually slightly more complicated, because they are
parameterised, and because we must implicitly pass the declaration typing
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Ty, to C(P), regardless of whatever the state type may be at any call to P
in C(P). Our definition of interfaced parameterised procedures is as follows:

proc P(D)int=1imp = Bin C(P)
let P = A7 a. PARAM(B, Tp.;,1p.o, Fp.4)
inA\7.({A\_.1 Cr,,. B}; C(P(7)))(7)

As we would expect, interfaced procedures are monotonic predicate trans-
formers, given that their implementations are predicate transformers at the
declaration type, and given that the calling context is a predicate transformer
of the external type:

B:Mr, (AP.(ASa P(a): Mg) = C(P): M,)
proc P(D)int=1imp=DBinC(P): M,

In the hypothesis of the rule above, note that when proving that the
calling context is a predicate transformer, we can assume that all of the
procedure calls are monotonic predicate transformers for any type S and any
argument ¢. We will often see the assumption that a procedure call P is a
monotonic predicate transformer, regardless of its arguments or calling type.
We will abbreviate this as follows:

P:M=ASaPla): Mg
We can introduce a procedure at any point using the following theorem:

C: M,
C C, proc P(D)int=Iimp=1inC

We can refine the various components of a procedure. The following
theorems are refinement monotonicity theorems used to transform the im-
plementation, interface, and calling contexts of an interfaced procedure.

To transform an implementation B to a new implementation B’, we can
use the following theorem. In addition to the main hypothesis listed below,
we will require that the sub-components are monotonic predicate transform-
ers, i.e. I,B,B": Mr, and (AP.P: M = C(P): M,), and also that
the calling context is refinement-monotonic, i.e.:

AP Q.IP,Q: M; (AS a.Pla) Cs Q(a)] = C(P) C, C(Q).

These extra obligations would usually be automatically proved in a mech-
anised interactive environment. This leaves us with the main implementation
refinement-monotonicity theorem:
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B Cr,. B
proc P(D)int =1Iimp = Bin C(P) C, proc P(D)int=1imp = B'in C(P)

To transform an interface I to a new interface I’, we can use the following
theorem. Again, we require that sub-components are monotonic predicate
transformers, i.e. I,1I',B : Mr,_and also (AP.P: M = C(P): M,).
These obligations would usually be automatically proved in a mechanised
interactive environment. This leaves us with the main interface refinement—
anti-monotonicity theorem:

I'Cr, 1
proc P(D)int =1Iimp = Bin C(P) C, proc P(D)int=1"imp = Bin C(P)

To transform a calling context C to a new one C', we can use the fol-
lowing theorem. We require that the sub-components are monotonic, i.e.
B,I: Mr, and (AP.P: M = C(P),C'(P): M;). In a mechanised
interactive proof, these will usually be automatically proved, leaving us with
the main context refinement-monotonicity theorem below:

AP.[P: M;
(AS a.PARAM(I,Tp+,1p 4, Fpa) Cs Pla))] =
C(P) C, C'(P)
proc P(D)int=1Iimp = Bin C(P) C, proc P(D)int=1imp = Bin C'(P)

The main hypothesis here is that the old calling context refines to the new
calling context. When performing this refinement, we are allowed to assume
that calls to P are monotonic predicate transformers, and that a (parame-
terised) instance of the interface I can be refined to a call to P.

6.3.4 Interfaced Recursive Procedures

Just as a non-recursive procedure is like the let binding of a simple state-
ment, so a recursive procedure is like the let binding of a recursion statement
let P =re P. B(P)erin C'(P). Here instances of let-bound P in C'(P) rep-
resent initial calls to the recursive procedure, and re-bound instances of P
in B(P) represent recursive calls. In a manner similar to non-recursive pro-
cedures above and to recursion blocks in Chapter 3, we can remember the
interface I to a recursive procedure with an assertion statement. We will also
use a bound logical constant v : V' to compare to our variant function (and
its well-founded relation) in R, in order to help us demonstrate that recursion
terminates. So, our recursive procedures are more like the following:

let P = B'in{)\_.I C B'}; C(P)
where B’ =re P.con v: V. {A_. {As.R(v,s)};I T P};B(v,P)er
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Again, the recursive procedures which we consider in this thesis are more
complicated than this, because our procedures are parameterised, and be-
cause we must pass the declaration typing to any instance of the procedure
call. We must treat both the initial call and the recursive call in a similar
way. Our definition of interfaced recursive parameterised procedures is as
follows:

rec P(D) int=Ivar=v:V R(v)imp= B(v,P)in C(P)
let P = A7 a. PARAM( I(T),TD’T,]ID7a,FD7a)
in\7.({\_.1 Cr,, B'(1)}; C(P(7)))(7)
where B'(7) =
re P. con v: V.
{2 AAs. R(v,8)};1 Cr,, P}
B(U,)\(I.PARAM(P,TD,T,]ID,a,FD,a))
er

As we would expect, a recursive procedure is a monotonic predicate trans-
former given that its calling context is a monotonic predicate transformer:
ANP.P- M= C(P): M,
rec P(D) int=Ivar=v:V,R(v)imp=B(v,P)inC(P): M,

We can introduce a recursive procedure at any point using the following
theorem. The side-conditions are all typing obligations. We only require our
well-founded variant function to be well-typed when the interface holds:

I: My, C: M, R:P(X x X) wf, R
Vo :8r, . (3¢:PSr, .x:1(Tp,;)q)= V(z): X

C C, rec P(D)int=Ivar=z:X,(As. R(V(s), 1))
imp={As.V(s)=z};I

in C

When the interface to a recursive procedure is a specification statement, we
can prove simplified versions of the theorem above which merge the assertion
statement into the precondition of the initial implementation. These simpli-
fied laws are shown later in this chapter along with the other main refinement
laws.

We can transform the interface I of a recursive procedure into a new
interface I' by using the following theorem. We will require that our sub-
components are monotonic predicate transformers, i.e. I,I': My, |
(APv.[v:V; P: M]= B(v,P): Mg, ), and
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(NP.P: M = C(P): M,), and that our calling context is refinement-
monotonic, i.e.
(AP Q.IP,Q: M; (AS a.P(a) Cs Q(a)] = C(P) C, C(Q)).

In a mechanised interactive proof, all of these will usually be automati-
cally proved, leaving us with the main interface refinement—anti-monotonicity
theorem below:

I'Cr, 1

rec P(D) int=1Ivar=v: V,R(v)imp = B(v,P)in C(P)
C.rec P(D) int=I'var=v:V,R(v)imp = B(v,P)in C(P)

We can transform the calling context C(P) of a recursive procedure to
a new calling context C’(P) by using the theorem below. Again, we will
require that the sub-components are monotonic predicate transformers, i.e.
I:Mrg, ,and (AP.P: M = C(P), C'(P) : M;). These can all usually
be automatically proven, leaving us with the main calling context refinement
monotonicity theorem below:

AP.[P: M;
(AS a.PARAM(I,Tp+,1p 4, Fpa) Cs Pla))] =
C(P) C, C'(P)
rec P(D) int=1Ivar=v: V,R(v)imp = B(v,P)in C(P)
C,rec P(D) int=1Ivar=v: V,R(v)imp=B(v,P)in C'(P)

We can transform the recursive call B(v, P) of a recursive procedure to a
new recursive call B'(v, P) by using the theorem below. We will require that
the sub-components are monotonic predicate transformers, i.e. I : Mr, |
(NP.P: M = C(P): M), and
(APv.[v:V; P: M] = B(v,P),B'(v,P) : Mr, ) and that the calling
context is refinement-monotonic, i.e.

(AP Q.[P,Q: M; (NS a.P(a) Cs Q(a))] = C(P) T, C(Q)).

These conditions can usually be automatically proved, leaving us with
the main recursive-call refinement-monotonicity theorem:

AP v.[v:V; P: M,
(AS a.PARAM({ As. R(v,s)}; I, Tp+,1p.a,Fpa) Cs P(a))
]|= B(v,P) C, B'(v,P)
rec P(D) int=1Ivar=v: V,R(v)imp = B(v,P)in C(P)
C,rec P(D) int=1Ivar=v:V,R(v)imp = B'(v,P)in C(P)

Where the interface I is a specification statement, this theorem can be
specialised by merging the parameterised assertion statement with the pre-
condition of the specification statement. We do not show these specialised
theorems here.
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6.4 Refinement Laws

The refinement laws and refinement-monotonicity theorems for the state-type
independent statements given in Chapter 4 carry over under the modified lift-
ing given in this chapter. We will take that as read, and here discuss refine-
ment laws for statements making use of program variables. We have already
seen the refinement-monotonicity theorems for local blocks and our proce-
dure statements, and so we will focus on refinement transformation laws. We
will first present the refinement laws for transforming free specification state-
ments into statements involving program variables, and then we will present
the refinement laws for transforming framed specification statements.

6.4.1 Refining Free Specifications
Introduce Framed Specification Statement

A form of frame contraction is to transform a free specification statement to
a framed specification statement with the same pre and post conditions:

P, Q] & w:[P, Q]

Introduce Single-Variable Assignment

We can transform a free specification statement to a single-variable assign-
ment statement where the assignment updates a program variable v : V. We
can assume that the precondition is true when proving that the assignment
establishes the postcondition and is well-typed:

Vs:8:.P(s) = Q(s[E(s)/v]) N E(s) : T(v)
[P, Q] C, v.=F

Introduce Multiple-Variable Assignment

We can transform a free specification statement to a multiple-variable assign-
ment statement where the assignment expression F' updates a set of program
variables v. We can assume that the precondition holds when proving that
the assignment establishes the postcondition and is well-typed:

(Vs:8,.P(s) = Q(s® F(s)) A F(s): I1,7)
P, Q] C. (F)
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Introduce Single-Variable Block

We can transform a free specification statement to a local block which con-
tains essentially the same specification statement, but with the value of the
localised program variable existentially bound in the pre-condition and uni-
versally bound in the post-condition. That is, the internal specification state-
ment must work for any initial value of the local variable and is allowed to
produce any final value for the local variable. For v in V and non-empty type
T and state-space S,, we have:

[P, Q] C, beginv:T.
(As.Je:1(v). P(s[e/v]), As.Ve:T(v). Q(s[e/v])]

end

This rule reduces to Morgan’s block introduction rule [73] when P and
@ don’t depend on v. For example, if P(s) contains s‘u, then P(s[e/v]) will
instead contain s[e/v]‘u. This will simplify to s‘u for v # v. Thus, if P
or () don’t depend on v, e will not be bound, and so the quantifiers can be
simplified away, leaving Morgan’s rule.

Introduce Multiple-Variable Block

Given that our new declaration D is a function from some set of variables
V', we have the following multiple-variable block introduction rule:

[P, Q] C, begin D. [As.3f:Iy7.P(s®f), As.Vf:IIy7.Q(s®f)] end
Again, when P and @ don’t depend on V (the variables in the domain of
D), then the quantifiers can be simplified away.

Introduce Procedure

At any time we can introduce a non-recursive procedure whose implemen-
tation is the same as its interface, by using the general rule given earlier in
Section 6.3.3.

Introduce Recursive Procedure

We can introduce a recursive procedure whose interface is a free specification
statement, and whose implementation is the same specification statement,
given that the calling context is well-typed, i.e. C': M, and that the variant
function V is well-typed on the well-founded R, i.e.

Vo:Sr, .p(r)= V(z): X.
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C C, rec P(D)int=[p, qlvar=xz: X, (As. R(V(s),z))
- imp =[As.z = V(s) A p(s), q]

Introduce Procedure Call

The refinement-monotonicity theorems for procedures and recursive proce-
dures allow us to transform parameterised instances of the procedure inter-
face into calls to the procedure. This rule determines if a free specification
statement is a suitable instance of an interface which is itself a free specifica-
tion statement. We can assume that the calling precondition P is true when
proving that the parameterisation initialisation I is well-typed and satisfies
the interface precondition p. We can also assume that the calling precondi-
tion P is true when proving that the finalisation F' maps states satisfying the
interface postcondition ¢ to states satisfying the calling postcondition @:

Vi:S, :8s.P(i)=2®I(i):{s:Ss| p(s)}
Vi:S, 1:85.P(i)Aq(z) = i®F(z):{5:S | Q(s)}
[P, @ & PARAM([p, ¢|, 5,1, F)

6.4.2 Refining Framed Specifications
Contract Frame

We can transform a framed specification statement with a frame w of program

variables to the same specification statement, except with a smaller frame

w';

w: [P, Q] T, w':[P, Q]

Expand Frame

We can expand the frame of a framed specification statement if we nonethe-
less introduce a logical variable to fix the value of the program variable. For
v : YV we have:

w:[P, Q] T, conuw. v,w:[As.P(s)Asv=u1wy As. Q(s)Asv=u

Weaken Precondition, Strengthen Postcondition

We can transform the precondition and postcondition of a framed specifica-
tion statement by appealing to the following theorems. When proving that a
new postcondition will establish the old postcondition, we can assume that
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the precondition originally held, and that variables not in the frame are the
same in the initial and final states:
Vs:8;. P(s) = P'(s)
w: [P7 Q] ET w [Pl7 Q]

Vi:S.P(i)=NVo:8;.idsubw = odsubw A Q'(0) = Q(0))
w: P, Q] & w:[P, Q]

Introduce Skip
We can refine a framed specification statement to a skip statement when a
state satisfying the precondition satisfies the postcondition:

Vs:Sr.P(s) = Q(s)

w: [P, Q] &, Skip

Introduce Sequential Composition

We can introduce an arbitrary mid-condition when we introduce the sequen-
tial composition of framed specification statements:

w:[P, R]C, w:[P, Q;w:[Q, R]

Introduce Alternation

We can transform a framed specification statement to an alternation state-
ment with an arbitrary guarding expression. The guard’s context is carried
into the precondition of framed specification statements in the branches of
the alternation statement:

w: [P, Q] C, if G then
| w:[As.G(s) AN P(s), Q]
] w:As.m G(s) A P(s), Q]

Introduce While-Do Loop

We can transform a framed specification statement into a while-do loop. The
body of the loop will be a framed specification statement embodying the
invariant of the loop and information about the variant showing termination
of the loop. The general rule for variant functions decreasing on a well-
founded relation R on X is as follows:
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Vs:S8.I(s)= V(s): X
Vs:8,. P(s) = I(s)
Vs:S..1(s) A= G(s) = Q(s)
w: [P, Q] C, while G do
conz:X. w:[As.G(s) NI(s) ANV (s) =z,
As. I(s) N R(V(s),x)]

od

When the relation is less-than on the natural numbers, we have the fol-
lowing special case of the above theorem:

Vs:8:.I(s)= V(s
Vs:8,. P(s ):>I
Vs:8.1(s) A= G(s)
w: [P, Q] C, while G do
con z:N. w: [As. G(s) ANI(s) AN V(s) =z,
As. I(s) N V(s) <z

): N
(s)

= Q(s)

od

Introduce Single-Variable Assignment

We can transform a framed specification statement into a single-variable
assignment statement, if the variable is in the frame and the assignment will
give us a state satisfying the post-condition. For v € w, we have:

Vs:8,. P(s) = Q(s[E(s)/v])
[P, QC, vi=E

Introduce Multiple-Variable Assignment

We can transform a framed specification statement into a multiple-variable
assignment statement. The assignment expression F' must affect only a set of
variables v contained in the frame w of program variables for the specification
statement:

(Vs:S8,.P(s) = F(s) : II,7 A Q(s® F(s))
w:lP, Q T, (F)

Introduce Single-Variable Block

We can transform a framed specification statement to a local block which
contains essentially the same specification statement, but with the frame
extended with the localised variable, and with the value of the localised
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program variable existentially bound in the pre-condition and universally
bound in the post-condition. That is, the internal specification statement
must work for any initial value of the local variable and is allowed to produce
any final value for the local variable. For a set of variables w C ) and a local
variable v : V, with a non-empty external state type S, and local variable
type T, we have:

w: [P, Q]
ET
begin v : T.
; v,w:[As.Fe:T(v). P(s[e/v]), As.Ve:T(v). Q(s[e/v])]

Introduce Multiple-Variable Block

Given that our the new declarations is a function from some set of variable
names v, and that the frame of the specification statement is a set of variable
names w, we have:

w: [P, Q]
Cr
begin D. wU v : [As.3f:I,7. P(s®f), As.Vf:II,7.Q(s® f)] end

Introduce Procedure

At any time we can introduce a non-recursive procedure whose implemen-
tation is the same as its interface, by using the general rule given earlier in
Section 6.3.3.

Introduce Recursive Procedure

We can introduce a recursive procedure whose implementation is its interface,
given that the calling context is well-typed, i.e. C': M, and that the variant
function V is well-typed on the well-founded R,i.e.Vz : Sy, .p(z) = V(z): X.

C C, rec P(D)int=w:[p, qvar=z:X,(As.R(V(s),1))
imp=w : [As.z = V(s) Ap(s), (]
inC

Introduce Procedure Call

The refinement-monotonicity theorems for procedures and recursive proce-
dures allow us to transform parameterised instances of the procedure inter-
face into calls to the procedure. This rule determines if a framed specification
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statement is a suitable instance of an interface which is itself a framed spec-
ification statement. We can assume that the calling precondition P is true
when proving that the parameterisation initialisation I is well-typed and
satisfies the interface precondition p. When proving that the finalisation F
maps states satisfying the interface postcondition ¢ to states satisfying the
calling postcondition ), and that the calling frame W is not violated, we
can assume that the calling precondition P is true, and that the procedure
interface respects its frame w:

Vi:S, :8s.P(i)=2®I(i):{s:Ss | p(s)}
(Vi 08, 2:85.P(i) N qg(z) ATy : Ss.(y® I(i)) dsub w = z dsub w) >
= idsub W = (i ® F(z))dsub W A i @ F(z) : {s:S, | Q(s)}
W [P, Q] C, PARAM(w: [p, ¢|,S,1,F)

6.5 A Small Example

In order to give some idea about how the refinement rules appear when
applied in practice, we present a small example: the development of a non-
recursive procedure which computes natural number multiplication by re-
peated addition. We will present the refinement as it would appear in a win-
dow inference proof, and we will note which side-conditions can be proved
automatically.

We begin with our initial specification, a framed specification statement
which requires program variable r be equal to the product of the values of
the program variables a and b. Only r is allowed to change in the course of
the program:

r:[true, r = a* b

In the course of this refinement, we assume a top-level typing environment
7, with 7(a) = 7(b) = 7(r) = N. We begin by introducing an as yet
undeveloped procedure to perform the multiplication. The user must supply
the formal parameters and the interface of the procedure in an application
of the Introduce Procedure Call rule from Section 6.3.3. This leaves us with
the following:

C, Mult([value z : N,value y : N, result z : N])
int =z : [true, z =1z % y]
imp =z : [true, 2z =z x y|
in r:[true, r=a* b
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The use of this rule in combination with the transitivity of refinement
results in side-conditions that the framed specification statement and the
procedure declaration are lifted monotonic predicate transformers. These
are automatically proven and not seen by the user. In this section we will
not again comment on these kind of side-conditions, as they are always au-
tomatically proved and not seen by the user.

We can proceed by developing the calling part of the procedure. We open
a window on the in part of the procedure declaration, using the refinement-
monotonicity theorem from Section 6.3.3. This leaves us with the following
focus:

r:true, r = a* 0]

Using the refinement monotonicity rule also gives us two extra pieces of
context in the hypotheses of this focus:

A S a. PARAM(z : [true, z ==z xy],7",1p ., Fp.) Cs Mult(a)
AS a. Mult(a) : Mg

Here 7' is the declaration typing, i.e. 7[N/z][N/y][N/z], and D are the formal
parameter declarations, i.e. [value z : N value y : N result z : N|. These
hypothesis will be carried forward in this sub-development, and allow us to
transform any suitably parameterised instance of the procedure interface into
an appropriate call to the Mult procedure. We can introduce the procedure
at any calling type S and with any suitable actual arguments a, and know
that the procedure call is a lifted monotonic predicate transformer.

We will use this context immediately, in conjunction with the Introduce
Procedure Call rule of Section 6.3.3 to transform our framed specification
statement into a call to Mult, as follows:

C, Mult([a,b,r])

As our specification statement was a trivial instance of the procedure
interface, the two main proof obligations of the Introduce Procedure Call rule
are automatically proved. That is, the actual pre- and post-conditions are
parameterised instances of the interface’s pre- and post-conditions. However,
a typing side-condition is presented to the user as a result of this rule:

a:NAbL:N = axb:N

We can supply a hint to quickly prove this condition. When we close the
window onto the procedure call, we are presented with the top-level procedure
declaration with the new calling part. We now open on the implementation
of the procedure, by using the appropriate refinement-monotonicity theorem
from Section 6.3.3. We are left with the following focus, at the typing 7'
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z: [true, z =1z *y]

The user can supply a new local variable ¢ and type N, and by appealing
to the Introduce Multiple- Variable Block rule from Section 6.4, transform the
specification statement to the following:

C, begint:N.
t,z:[Fea: gy, Qoo ) =2 =1x*y]
end

Here 7" = 7'[N/t]. The side-condition that the block declaration is func-
tional (i.e. that we do not declare two local variables with the same name)
is automatically proved and not seen by the user. We can open on body of
block, by using the refinement-monotonicity rule of Section 6.2. This leaves
us with:

t,z:Fea: gy, oo llpnr)=2=1x*y]

We can ignore the existential assumption in the pre-condition, but we
will clean up the post-condition by using the Strengthen Postcondition rule
of Section 6.4, to arrive at:

Cor tyz:[Fax: pt", z2=2zxy]

The side conditions from the application of this rule are trivial, are au-
tomatically proved, and are not seen by the user. We now nominate the
mid-condition z = 0 A ¢ = z, and in conjunction with the Introduce Se-
quential Composition rule of Section 6.4, introduce a sequential composition
statement, as follows:

Crr tyz:[Foa:Iyt", 2=0A1t =2zl
t,z:z=0Nt =2, z=u1x*y]

There are no visible side-conditions, and we can open on the first state-
ment by appealing to the left-argument refinement-monotonicity of sequential
composition rule as listed in Appendix C. This leaves us with the following
focus, which we can transform to a multiple assignment statement by using
the Introduce Multiple- Variable Assignment rule from Section 6.4:

t,z:[Fea: pt", 2=0At=1]
Cn t,ZZZZI),O

The side-conditions from this transformation can mostly be proved auto-
matically. We are presented with a typing side-condition which we can prove
by supplying the hint that 0 : N. We can close this window, and open on the
second statement. We will transform this into a while-do loop by using the
Introduce While-Do Loop rule of Section 6.4 and nominating a guard ¢ # 0,
an invariant z + (¢ * y) = z * y, and a variant function ¢.
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t,z:[z=0Nt=1z, z=1x%y]
ET” while ¢ 7£ 0 do
con V:N. t,z:[t#£0ANz+(txy)=zxyANt=1V,
z4+(txy)=xxy ANt < V]
od

We are presented with two arithmetic side-conditions, that the invariant
is initially true, and that at the end of the loop the post-condition is satisfied.
That is, for {¢,z,y,2} € N, we must show: 0+ (z xy) =z *y and t =0 A
z4 (txy) =2z xy = 2z =xxy. These can both be proved by the user.

We open on body of loop and the bound logical constant statement, and
transform the specification statement to a multiple-variable assignment as
follows:

tz:[t#£0Nz+(txy)=zxyANt=1V,
24+ (txy)=xxy ANt < V]
[~ t,z::t—l,z+y

The user must supply hints to satisfy the following typing side-conditions:
t:N=t—-—1:Nyand 2: NAy:N= z+y:N This will leave us with two
main side-conditions, that the loop body maintains the invariant, and that
it decreases the variant function. That is, for {t,z,y, 2} € N, we must show:

t£O0Nz+(txy)=zxy = z+y+((t—1)xy)=zxy
t£0 = t—1<t

These facts of arithmetic can be proved by the user.

We have now completed our development. We can close back to the top
level, stopping along the way to remove the logical constant which no longer
appears in the body of the loop. We use the Remove Logical Constant rule
from Section 4.2 as follows:

con V:N. t,z:=t—1,2+y
Cn t,z::t—l,z+y
We are left with our final theorem, whose conclusion is as follows:

r: [true, = ax*b|
C, Mult([value z : N,value y : N result z : NJ)
int =z : [true, z =1z *y]
imp =
begin ¢ : N.
t,z :=1z,0;
while t #0do t,z:=t—1,z+ y od
end
in

Mult([a, b, r])
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Chapter 7

Data Refinement

We define a data-refinement relation, which allows us to change the data-
type invariant and representation of program variables. We first define data-
refinement at the set-transformer level, and then lift it in a manner analogous
to the lifting of procedural refinement. Finally, we list a collection of data-
refinement rules, discuss the data-refinement of procedure interfaces, and
comment on the use of contextual information in practical data-refinement.

Data-refinement concerns the correctness-preserving re-implementation
of programs. An initial procedural program refinement will typically use
program variables on abstract types in order to highlight the simple core
structure of an algorithm. We can use data-refinement to change the invari-
ant on our abstract types, or to transform abstract types into more concrete
types. Alternative data-representations can provide us with opportunities
for more efficient implementations. Moreover, sufficiently concrete imple-
mentations will be realisable in a programming language with a real-world
compiler.

Formal techniques for changing data representations in programs were
first proposed by Hoare [48]. Rules for data-refinement have been widely
published [78, 76, 14, 11, 34, 100]. In this chapter, we describe a mechani-
sation of forward data-refinement similar to the formalisation by von Wright
[100]. Our work differs in that our data-refinement operator does not have
operands for adding and removing program variables. Lacking this frame
information, we cannot prove a rule which will allow us to add or remove
program variables while performing a data-refinement. However, we can
change the representation and type of the values of program variables. Also,
we don’t pose universal restrictions on data-refinement relations, but instead
consider restrictions as they arise in the proof of individual data-refinement
rules.
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Below, we provide a list of piece-wise data-refinement laws for the state-
ments considered in this thesis. Of special interest will be the rules for blocks
and procedures. Our rules for data-refining blocks let us data-refine the body
of a block under a different data-refinement relation to the relation external
to the block. In particular, procedural refinement is a special case of data-
refinement, and so we present rules which let us introduce a data-refinement
by procedurally refining local blocks. Similarly, special cases of our param-
eterised procedure data-refinement rules allow us to refine a procedure by
data-refinement. Our procedure data-refinement rules are also notable in
letting us data-refine procedure calls under whatever data-refinement rela-
tion is in force at the point of the procedure call.

7.1 Data Refinement

Our definition of forward data-refinement uses relational assertion for ab-
straction, and (converse) relational non-deterministic assignment for repre-
sentation. They form an adjoint pair, as follows. For R : P(K x A),

{R.}A,K;[R_I]K,A C SkipK
Skipy T [B' 43 {R} 4k

Our definition of the data-refinement of set transformer statements is as
follows:

oC(R) k= AR} domey Udomuy' @ = 5 domay.Udom)

We extract the abstract and concrete state types from the operands, just as
we did in Chapter 3. Hence, for a : P4 and k : Pk, we have the simpler
equivalence:

aC(R) k = {R}, x50 C ks{R}, «

There are three other well-known equivalent definitions [100]. For a : M4,
k: Mg and R : P(K x A), we have the following equivalences:

¢C(R)k = aC [R’I]K,A;k;{R}A,K
(],[:(R) k= {R}A,K;a’; [R_I]K,A Ck

aC(R)k = a [Ril]K,A C [Ril]K,A;k

|

Procedural refinement is a special case of data-refinement over homoge-
neous state types with the identity relation. Given a, b : P4, we have:

a Cb=aC(Az:A.z) b
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7.2 Lifting Data-Refinement

We can lift data-refinement in the same way that we lifted refinement in
Chapter 6, i.e. we supply typings once at the top of a data-refinement, and im-
plicitly pass them to sub-components. However when lifting data-refinement
we supply two typings: one for abstract state type and one for the concrete
state type. Our definition for lifted data-refinement is as follows:

aCea(R) k= al@)C({(k,a):S. x Sa| R(k,a)}) k(k)

Theorems proved at the set-transformer level can be recast at this lifted
level. For example, that procedural refinement is the same as the identity
data-refinement is stated as follows. For a : M, and b : M,

e T, b = aC. Az y.z=y)b

7.3 Data-Refinement Rules

In this section we give theorems for composing data-refinement, and then list
rules for the piece-wise data-refinement of the statements considered in this
thesis. Following that, we discuss the data-refinement of procedure interfaces,
and also the limitations of the data-refinement rules presented here with
regard to the contextual data-refinement of programs. Our rules are neither
calculational [68], nor complete [34].

7.3.1 Composing Data-Refinement

Data-refinement is not a transitive relation, and so cannot be used with ear-
lier versions of window inference. However, it does compose with procedural
refinement, and so will work with the flexible window inference described in
Chapter 2. For a,b: M, and ¢ : M, we have:

a Lo b bgn,a (R) c agn,a (R) b b Le c
aClra(R) c aCra(R) c

Of less interest from a methodological perspective is the fact that we can
compose data-refinement with itself. For a : My, b : Mp, and ¢ : M, we
have the following:

aCpa(R)b bCep(S)c
GEC’A(SOR) C
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7.3.2 Data-Refinement Laws

Here we list the rules allowing the piece-wise data-refinement of lifted state-
ments in our user-level refinement language. We first list the rules for atomic
statements, and then for compound statements and procedures.

Skip

An abstract skip statement is data-refined under any relation to a concrete
skip statement:

Skip . (R) Skip

Assertion

An abstract assertion statement can be data-refined to a concrete assertion
statement which respects the original condition mapped through the data-
refinement relation:

{P}C.n(R) {Nk.Fa:S8,.R(k,a) A\ P(a)}

Non-Deterministic Assignment

An abstract non-deterministic assignment statement can be data-refined to a
concrete non-deterministic assignment statement which respects the original
condition mapped through the data-refinement relation:

[P]Cra(R) [MNEk.Fa: S, R(k,a) A P(a)]

Free Specification Statement

To data-refine a free specification statement, the concrete precondition must
preserve the abstract precondition mapped through the data-refinement rela-
tion. Also, assuming that the concrete (and abstract) preconditions do hold,
the concrete postcondition must be able to establish some corresponding ab-
stract postcondition:

Vk:S: a:8y R(k,a) AN P,(a) = Pg(k)
Vki,ko:S, ai:S,.
R(ki, ai) A Py(ai) A Py(ki) A Qy(ko) =
(Fao : Sy R(ko, ao) A Qq(a0))

[Paa Qa] En,a (R) [Pka Qk]
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Framed Specification Statement

To data-refine a framed specification statement, the concrete precondition
must preserve the abstract precondition mapped through the data-refinement
relation. Also, assuming that the concrete (and abstract) preconditions do
hold, and that the concrete specification statement respects its frame, the
concrete postcondition must be able to establish some corresponding abstract
postcondition, while also respecting the abstract frame:

Vk:S; a:8q. R(k,a) A Py(a) = Pi(k)
VEki,ko:S, ai:S,.
R(ki, ai) N\ Py(ai) N Py(ki) A ki dsub wy = ko dsub wy, A Qr(ko) =
(Fao : S,. R(ko, ao) A Qu(ao) A ai dsub w, = ao dsub w,)

Wy - [Paa Qa] En,a (R) Wy, - [Pka Qk]

State Assignment

We can data-refine a state assignment when the abstract state function F
and the concrete state function G are both well-typed given the ‘invariant’
information in the data-refinement relation. i.e. we must prove the following
side-conditions:

Va:8,. (3k:Ss. R(k,a)) = F(a): S,

VEk:S.,. (3a:Sy.R(k,a)) = G(k) : S,
Then, we have the following rule, which lets us data-refine a state given that
the state assignment functions preserve the data-refinement relation:

Va:8, k:Sq. R(k,a) = R(G(k), F(a))
(F) Era(R) (G)

Single-Variable Assignment

We can data-refine a single-variable assignment when the abstract and con-
crete assignments are well-typed given the ‘invariant’ information in the data-
refinement relation. That is, we must prove the following side-conditions:

Va:8S,. (3k:Ss. R(k,a)) = a[E(a)/v]: S,
VEk:S.. (3a:Sa. R(k,a)) = k[F(k)/w]: S,

Then, the following rule lets us data-refine a single-variable assignment state-
ment if the state updates preserve the data-refinement relation:

Va:S, k:Ss. R(k,a)= R(k[F(k)/w],a[E(a)/v])
v:=FEC,o(R) w:=F
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Multiple-Variable Assignment

We can data-refine a multiple-variable assignment when the abstract and con-
crete assignments are well-typed given the ‘invariant’ information in the data-
refinement relation. That is, we must prove the following side-conditions:
Va:8,. (3k.R(k,a)) = a® E(a): S,
Vk:S.. (k. R(k,a)) =k F(k):S

Then, the following rule lets us data-refine a multiple-variable assignment
statement if the state updates preserve the data-refinement relation:

Va:8y k:Ss.R(k,a)= R(k® F(k),a® E(a))
(E) Coa(R) (F)

Sequential Composition

The sequential composition of two abstract statements can be data-refined
to the sequential composition of two correspondingly data-refined concrete
statements: For [,,r, : M, and [, 1, : M, we have:
la En,a (R) lk Tq En,a (R) Ty
la; Ta En,a (R) lk; Tk

Angelic and Demonic Choice

The angelic (demonic) choice between two abstract statements can be data-
refined to the angelic (demonic) choice between two correspondingly data-
refined concrete statements. For [,,r, : M, and [, r; : M, we have:
la En,a (R) lk T En,a (R) Tk la En,a (R) lk Ta En,a (R) Ty
la|_|7"a Eﬁ,a(R) lk|_|’f’k la|_|’f’a E,ﬁya(R) lk|_|7"k

Alternation

We can data-refine an alternation statement when we can data-refine each
branch independently, and when the concrete condition is equivalent to the
abstract condition. We also require that for any abstract state satisfying
the guard, all other abstract states reachable through the data-refinement
relation also satisfy the guard. For [,,r, : M, and [, r, : M,,, we have:
la En,a (R) lk
Tq En,a (R) Ty
Va,b:8, k:Si. Go(a) N R(k,a) N R(k,b) = G,(b)
VEk:S. (3a:8. Go(a) N R(k,a)) & Gi(k)
if G, then [, else 1, fiC, , (R) if Gy then ), else 7y fi
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Logical Constants and Logical Variables

If we can data-refine the body of a (bound) logical constant statement, then

we can data-refine the logical constant statement as a whole. i.e. if for any

z (in T') we can prove a(z) : M, and k(z) : M,, then we have:
Vz.a(z)Cpa(R) k(z) Vz.Ta(z)Cho(R) k()

con z. a(z) C, o (R) con z. k() conz:T. a(z) Cp o (R) con z:T. k(x)

Similarly for (bound) logical variable statements, if for any z (in 7') we
can prove a(z) : M, and k(z) : M, then we have:
Vz.a(z)Cpa(R) k(z) V. Ta(z)Cya(R) k(z)
var z. a(z) Cy o (R) var z. k(z) varz:T. a(z) Cp o (R) var z: T. k(z)

Recursion Blocks

Raw recursion blocks can be data-refined if their bodies can be data-refined
given that the recursive calls are data-refined. Note that for the raw recursion
block, calls are of the same state-type as the recursion block. For regular, (G),
and F preserving M, we have:

Nak aCra(R) k= F(a) Cra(R) G(K)
re(F)erC,o(R) re(G)er

While-Do Loops

A while-do loop can be data-refined when its body can be data-refined, and
when the concrete guarding condition is equivalent to the abstract condition
mapped through the data-refinement relation. We also require that for any
abstract state satisfying the guard, all related abstract states also satisfy the
guard. For b, : M, by : M, we have the following:

VEk:S; a:Sy.R(k,a)ANG(a) = (Vb : S, R(k,b) = G(b))
ba En,a (R) bk
while G do b, odC, , (R) while Ak.3a:S,. R(k,a) A G(a) do by od

Single-Variable Blocks

In order to data-refine a single-variable block, the body of the block must be
data-refined, possibly under some different internal data-refinement relation.
The internal data-refinement relation must be preserved on the initialised
states from the external data-refinement relation on the original states. The
external data-refinement relation on the final state must be established from
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the internal data-refinement relation on the final state of the body of the
block. That is, for v,w : V, a : Myr,/0], and k : M7, /4], Wwe have the
following:

a

a Ex[ry ful,a[Ta /] (B') K
VE : Sy ITi/u] k:S; a:8y. kdsub{w}=k"dsub{w} A R(k,a) = )
(Fa': Sy (T /o] R'(K',a") A adsub {v} = o' dsub {v})
VE : Sirgjw) @ 2 Safraje) k Sk a:Sa. RI(K, a') N R(k,a) =
< R(k’[k‘w/w], a'la‘v/v]) >
begin v : T,,. a endC,, , (R) begin w : T}. k end

A special case of the above theorem is when the external data-refinement
relation is in fact the identity function, i.e. when it corresponds to procedural
refinement. Then, we have the following theorem, which lets us refine a block
by data-refining its body. For v,w : V, a : M(r,/y), and k : M7, ), We
have:

@ Comy jur(rao) (R) K
Vs:S; k' Srmjw). s dsub w = &' dsub w =
( (Fa: ST/,, R(k',a') A sdsub {v} = a’ dsub {v }))
Vs:S k' Sergjw 0 Srprypo)- R(E o) = K [s'w/w] = a/[s‘v/v]
begin v : Ta. a end ET begin w : Ty. k end

Multiple-Variable Blocks

In order to data-refine a multiple-variable block, the body of the block must
be data-refined, possibly under some different internal data-refinement rela-
tion. The internal data-refinement relation must be preserved on the ini-
tialised states from the external data-refinement relation on the original
states. The external data-refinement relation on the final state must be
established from the internal data-refinement relation on the final state of
the body of the block. That is, for v, w : V, a : My, /v, and k : M1, /u]s
we have the following. When dom(D,) C V, dom(D;) C V, a : M,mp,, and
k: Mymp,, we have:

a EnEBDk,aEHDa (RI) k
VE": Semp, k: Sk a:Sa.
k dsub dom(Dy,) = k' dsub dom(Dy) A R(k, a) =
(Fd' : Semp,- R'(K', a') A a dsub dom(D,) = 4’ dsub dom(D,))
VE": Semp, @' : Samp, k: Sk a:8a. R(K',d) N R(k,a)=
< R(k' @ (k dres dom(Dy)), a' ® (a dres dom(D,))) )
begin D,. a end C, , (R) begin Dj. k end

92



Analogously with single-variable blocks, we can procedurally refine a
multiple-variable block by data-refining its body. When dom(D,) C V,
dom(Dy) CV, a: Mgp,, and k : M mp,, we have:

a Crap,-mp, (R) k
VEk:Smp, s:S:.sdsubdom(Dy) =k dsub dom(Dy) =
< (Fa:S:mp,. R(k,a) A sdsubdom(D,) = a dsub dom(D,)) >
VEk:Smp, o :Srmp, s:S:. R(k,a)=
( k & (s dres dom(Dy)) = a @ (s dres dom(D,))
begin D,. a end T, begin D;. k end

Interfaced Procedures

We can data-refine an interfaced procedure by data-refining its body and its
calling instance. The external data-refinement relation will be the same for
data-refining the body, but just as with local blocks, we might have a different
data-refinement relation for the procedure implementation inside the param-
eterisation. Moreover, in the calling context, each instance of the procedure
call may occur within the context of a different data-refinement relation. The
data-refinement rule we present will deal with all of these difficulties. Here
we will present a general form of the procedure data-refinement rule. Below,
in Section 7.3.3, we will comment on how we can prove a more useful form
of this rule when the procedure interface is a specification statement.

In the following, the external concrete and abstract declaration typings
will be x and «. The concrete and abstract implementation typings will be
Tp, . and Tp, o. The various calling typings will usually be denoted 7. For
expository purposes, we’ll define the following abbreviations. Our rule will
have contextual information allowing us to data-refine a procedure call P
with arguments a to a procedure call ) with arguments b. We represent this
information with the following abbreviation:

DCALL(P, Q, R, k,a, Dy, D,) =
AS K o ab.
[INITIAL(S,x', o/, a,b, R, Dy, k, Dy, @v);
FINAL(S,k',d,a,b, R, Dy, K, D, )] =
P() Co (5) Q1)
The initialisation and finalisation conditions are defined as follows. They
require that the initialisation and finalisation expressions are well-typed, and

that the calling context’s data-refinement relation S is suitably tied to the
declaration context’s data-refinement relation R:
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INITIAL(S, k' o/, a,b, R, Dy, k, Dy, ) =
Vy:Se i:Suy. S(y, Z) = (Vk, : S’]I‘Dk,n- da': S’]I‘Da,a-
(3 w-]IDk,b(y) . HwTDk,n A w g V) AN
(3 w-]IDa,a(Z.) . HwTDa,a N w g V) A
R(K & Lpp(y), o' ® Lp,a(i)))

FINAL(S,k',d,a,b, R, Dy, K, D,, ) =
Vy:Swi:Sy k': Sty a :8rp,, .. S(y,1) A R(K, d') =
(3 ’LU.IFDk,b(k,) : Hw/ﬁll N w g V) A
(Fw.Fp, o(a) : ! Aw CV) A
S(y @ Fp, p(K),i ©Fp, a(a'))

We will require that the concrete and abstract procedure implementa-
tions are monotonic predicate transformers i.e. B, : My, = and By :
M Dy and that the calling contexts are monotonic predicate transformers,
ie. (AP.P: M = C,(P): M,)and (AP.P: M = C(P): M,). These
conditions can usually be automatically proved in a mechanised interactive
environment. This leaves us with the main procedure data-refinement theo-
rem, as follows:

I, Erp,, Ba= Iy Er, , Bk
By Cry, o Thya (B) By
AP Q.[P:M; Q: M; DCALL(P, Q, R, &, a, Dy, D,)] =>
(Mehes )
proc P(D,) int =1, imp = B, in C,(P)
Cra (R) proc P(Dy) int = I imp = By, in Ci(P)

This requires us to data-refine the calling context and the implementation.
We are also required to show, given the old abstract interface is implemented
by the old abstract implementation, that the new concrete interface imple-
ments the new concrete implementation. This is not a piece-wise condition,
and so looks unsuitable for practical use. (In effect this would require us to
replay the entire derivation of the concrete procedure implementation, which
would obviate most of the gain from procedural abstraction.) However, when
our procedure interface is a specification statement, we can prove a piece-wise
form of this data-refinement rule which will require us to prove that the new
concrete interface is an anti—data-refinement of the abstract interface. We
discuss this further in Section 7.3.3.

Recursive Procedures

Data-refining recursive procedures is very similar to data-refining interfaced
procedures. In interfaced procedures we data-refined the calling context un-

94



der the assumption that we could data-refine procedure calls. With recursive
procedures, we will do this not just for initial calls in the calling context, but
also for recursive calls in the implementation of the procedure. Just as for
interfaced procedures, we will present a general form of data-refinement for
recursive procedures. Similarly, we will be able to specialise this rule when
our interface is a specification statement, yielding more practical piece-wise
rules.

We will require various well-formedness conditions on recursive proce-
dures we wish to data-refine. The abstract and concrete interfaces must be
monotonic predicate transformers on their respective declaration types, i.e.
I, : My, and I : My, . We also require that the calling contexts are
well-typed, i.e.

(NP.P- M = C,(P): M,) and (AP.P: M = Ci(P) : M,,).

and that the recursive calls are well-typed, i.e.:

(APv.[v:N; P: M] = B,(v,P): Mz, )
(AP v.[o:N; P: M]= By(v,P): Mr, )

Finally, the concrete implementation must be refinement monotonic, as fol-
lows:

(AP Quv.[o:N; (A7 a.P(a) & Q(a))] = Bi(v, P) Exp, . Bi(v, Q))

The obligations above will all be automatically proved in a mechanised
interactive environment, leaving us with the following data-refinement rule
for recursive procedures:

</\k a.la: Mr, 5 k: Mo, i aCr,  Thow (R') k; I, Cryp,,, o] =
Iy Crp, 0 K
Ak av.[v:N;a(v): Mr, ;5 k(v): Mr,
a(v) Crp, . Tp,0 (B) k(v); {As. Va(v,8)}s L Ery,, alv)] =
{As. Vi(v,s)}s I Crop, . k(v)

)

AP Qu.[v:N; P: M; Q: M; DOALL(P,Q,R',m,a,Dk,Dm]:»)

Bo(v, P) Crp, 1,0 (R) Bi(v, Q)
</\P Q.[P: M; Q: M; DCALL(P, Q, R, k,a, Dy, D,)] = )
Ca(P) En,a (R) Ck(Q)

rec P(D,)int=1I,var=v: N, V,(v)imp = B,(v, P) in C,(P)
Cra(R) rec P(Dy)int=1I;var=v: N, Vi(v)imp = By(v, P) in Cyx(P)

Importantly, this rule allows us to data-refine sub-components of the
implementation and calling part of the procedure at different typings and
with different data-refinement relations, depending on what (perhaps deeply
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nested) context occurs at calls to the procedure. Also, when x = « and the
outer refinement R is the identity function, we could prove a theorem which
allows us to refine a recursive procedure by data-refinement.

The theorem above is the general theorem for data-refining recursive pro-
cedures. When the interface is a specification statement, we can absorb the
assert statement with the precondition of the specification statement, and
also appeal to interface data-refinement theorems shown below in Section
7.3.3. We will not show these variants here. However, note that in the
general theorem above, it appears that we have duplicated the interface re-
finement obligation. This ‘duplication’ is logically necessary: one obligation
corresponds to the initial call, and the other to the recursive call. However,
this does not lead to a duplication of proof obligations when we use the rule
in practice. When our interface is a specification statement, the specialised
forms of this general theorem can merge the common parts of these two
obligations.

7.3.3 Interface Data-Refinement

Our generic procedure data-refinement rules go some way to supporting a
piece-wise data-refinement methodology, as they allow us to data-refine the
body and call of a procedure separately. However, given that we can per-
form these individual data-refinements, we are still required to establish that
our new concrete interface is indeed an interface to our new concrete proce-
dure body. We would prefer to just anti-data-refine the interfaces separately,
rather than re-play the entire development of the concrete procedure imple-
mentation. So, given that our abstract interface a is implemented by b, that
b data-refines to a concrete implementation /, and that our concrete interface
k anti—data-refines a, we would like to be able to show that our concrete in-
terface k refines to its implementation [. That is, we would like the following
diagram to hold:

1M
R

Cx

However, in general, we can’t show the procedural refinement of k to [,
but rather only that the following homogeneous data-refinement holds, when

a,b: M, and k,[: M,:
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k

Cr,x(Az y.3aSq. R(z,a)AR(y,a))

We must place conditions on R to make this homogeneous data-refinement
kCkr(Az y.3a:S,. R(z,a) A R(y,a)) | correspond to the procedural re-
finement £ C, [. For example, a sufficient condition is that R is a total
function.

However, when the interface is a specification statement, we can bundle
our conditions on R into a context which can take advantage of the specifi-
cation’s precondition.

For free specification statements we have the following theorem. When

b: M,and [: M,,

Yk S Pi(k) = (3a: Sa. Po(a) A R(E, a))
(Fk: Se. Pr(k)) = (VE : S (Fa. Qu(a) A R(k, a)) = Qk(k))
[Paa Qa] Ea b bgna(R) !

I

[Pka Qk] En

We have a similar theorem when our interface is a framed specification
statement. Again, for b : M, and [ : M, we have the following:

vpa; Qo - Sa Pk, Gk - Sn-
P.(pa) N Qa(qa) N R(pr, pa) N R(qr, o) A pa dsub v = ¢, dsub v =
pr dsub w = ¢, dsub w
VEk:Sq. Pr(k) = (Fa:Ss Pula) N R(k,a))
(Vi, 0:8.. Pr(i) A (Fa. Qu(a) A R(o,a)) A idsubw = o dsub w = >
Qu(0)
v:[Pa, Q) Ca b bCrn(R) I

w: [Py, Qi) Tkl

We can use these conditions to ‘simplify” our general interfaced procedure
and recursive procedure data-refinement rules.

7.3.4 Contextual Data-Refinement

Our data-refinement rules have a limitation for practical use which is shared
by standard presentations of data-refinement in the literature. Our rules
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do not make use of information from the context of the development. For
example, when we data-refine the branches of an alternation statement, we
are not in general able to make use of the contextual information in the guard
of the alternation.

A general way to solve this problem would be to propagate this contex-
tual information throughout our development by using assertion statements.
For example, an alternation data-refinement rule could introduce context in
assumptions as follows. For [,, r, : M, and I, r;, : M, we have:

{G};LCho(R) {As.3a:8,.G(a) ANR(s,a)}slk
{As. 7 G(s)};7maCra(R) {As.Va:8. R(s,a) =~ G(a)};mk
if Gthenl,elser, fiC, o (R) ifAs.Ja:S,. G(a) A R(s, a) then [ else 7y fi

However, the work required to support this mode of development would
go beyond the scope of this thesis. We can work around this problem by
utilising the fact that specification statements carry their context in their
preconditions—if the only atomic statements we data-refine are initialisa-
tions, specification statements, or interfaced procedure calls, we will not en-
counter any limitations on data-refinement in practice.
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Chapter 8

Case Study: Propositional
Tautology Checking

We demonstrate the use of our refinement theory through a case study:
the refinement of the specification of a propositional tautology checker to
a partially-implemented decision tree algorithm, and its subsequent data-
refinement to an algorithm over reduced ordered negation trees. The algo-
rithm we present is based on the binary decision diagram algorithm. The
data-refinement progresses through several stages, first introducing several
stronger data-type invariants, and then changing the data-type from deci-
sion trees to negation decision trees. We make particular use of statements
acting on named program variables, and demonstrate that the theory of re-
finement developed in this thesis supports a modular style of development.
However, the case-study has been proved using the mechanised refinement
theory described in this thesis, and demonstrates the feasibility of the theory
for application to non-trivial program development. For this presentation,
we hide some details of the mechanisation beneath a thin layer of sugared
syntax, but we alert the presence of proof obligations as they arise.

Efficient propositional tautology checking is at the heart of many modern
model checking tools and hence plays an important role in the debugging
and formal checking of hardware and communication protocols. A binary
decision diagram (BDD) is a data structure for an efficient implementation
of propositional tautology checking. BDDs can be seen as an efficient imple-
mentation of truth tables. In this chapter we formalise this perspective by
presenting an BDD-related algorithm as a data-refinement from truth tables
and decision trees. In this, we follow Harrison’s [44, p162] informal remarks:

The basic idea of binary decision diagrams is to build up a
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‘decision tree’ [...] In that simple form, binary decision diagrams
would merely be a way of organising a truth table, and therefore
have little interest. But the following two refinements often lead
to an enormous increase in their efficiency.

e Rather than using trees, use directed acyclic graphs, sharing
any subexpressions which arise, as proposed by Lee (1959)
and Akers (1978).

e Choose a canonical ordering of the variables at the outset,
and arrange the graph such that the variables occur in that
order down any branch, as proposed by Bryant (1986).

As with other previous correctness arguments for BDD algorithms [63, 67]
our final algorithm uses trees and not graphs. I would expect that our work
could be extended to utilise graphs sharing equivalent subexpressions; this
has not been attempted because of time constraints. Our implementation
reflects many other important aspects of BDD implementations, and includes
an optimisation for negating decision trees suggested by Brace, Rudell and
Bryant [21].

After presenting our specification of tautology checking, we give data re-
finements, in turn, to decision trees, reduced decision trees, ordered decision
trees, negation decision trees, and finally reduced ordered negation decision
trees. A data refinement effectively adds extra restrictions on an underlying
data type, and provides corresponding opportunities to give more efficient
and simpler implementations. This form of presentation highlights the spe-
cific role played by each part of the invariant on the final datatype.

8.1 The Initial Specification

The tautology checker will operate over finite propositional formulae con-
taining variables constructed from a given set of variable names V, and basic
logical connectives. This language is a small, but complete set of connectives
for first-order propositional logic:

prop ::= VAR(V)) | NOT((prop)) | prop AND prop

We define discriminators is_Var, is_Not, and is_And, and destructors VarV,
NotA, AndL, and AndR in the normal way. We consider a variable-valuation
to be represented by a set of variables. So, for a variable-valuation V', and
a variable v, if v € V, then VAR v evaluates to true and otherwise to false.
The meaning of a proposition is defined by [_]_: prop x PV — B, a Boolean
function defined recursively over propositions:
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[[VAR U]] v
[[p1 AND pQ]] 1%

1010

Tautologies are those propositions which are always true, that is, propo-
sitions which evaluate to true under every variable-valuation. So, the speci-
fication for our tautology checker can be stated as follows:

r:[true, r=VV:PV.[p]v]

Here, and throughout this chapter, we will refer to 7, a top-level typing
environment such that 7(r) = B and 7(p) = prop.

A different and more demanding specification might also call for a counter-
example if the proposition isn’t valid. We will leave that elaboration for
another time! A naive iterative solution to our specification could lead to
the truth table algorithm, i.e. generate each variable-valuation in turn and
evaluate the proposition under that variable-valuation.

8.2 Decision Trees

Rather than testing the proposition for validity directly, we construct an
equivalent decision tree, and then test it for validity.

8.2.1 Notation and Data Types

A tree can be defined inductively as:
tree = Leaf((B) | Node((V x tree x tree))

We define discriminators is_Leaf and is_Node, and destructors LeafT,
NodeV, NodeL, and NodeR in the normal way. The left and right branches
of a tree node represent the ‘true’ and ‘false’ branches of the node’s variable-
valuation. Thus { _ [}_ : treex PV — B, the ‘meaning’ of a tree for a
particular variable-valuation can be defined as follows:

{| Leaf(b) [t v
{{Node(v, I, ) [} v

b
cond(v e V. {{I}v,{r}v)

However, instead of checking a tree’s validity by testing it for each variable-
valuation in turn, it might be easier if we could just check that all of the leaves
of the tree are true. We define the leaves of a tree, tleaves : tree — B, as
follows:

~
-~
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b
tleaves(l) A tleaves(r)

tleaves(Leaf(b))
tleaves(Node(v, 1, 7))

~
~

We can certainly prove that, for ¢ : tree:
tleaves(t) =V V:PV.{t[}v

However, the converse does not hold, because repeated variables in a root-
to-leaf path are not ruled out. In such a tree, for some variable-valuations,
the meaning function never considers some leaves, which may be false-valued.
We need to restrict our attention to trees in which a variable can only appear
once on any path from the root to any leaf. We define the set of these trees
to be dtree:

Leaf(b) € dtree
Node(v,l,r) € dtree = v ¢ tvars(l) A v & tvars(r) A | € dtree A r € dtree

where tvars : tree — PV, the variables in a tree, is defined as follows:

tvars(Leaf(b)) = {}
tvars(Node(v,l, 7)) = {v} Utvars(l) U tvars(r)

Now we can prove, for ¢ : dtree:

tleaves(t) =V V:PV. {|t}v

8.2.2 The Decision Tree Algorithm

Using the above equivalence we refine our initial specification, as follows:

r:[true, =V V:PV.[p]v]
C, “Introduce Local Block, Sequential Composition”
begin t : dtree.
t:[true, (VV:PV.[p]v)e YV:PV.{t}v)];
r:(VV:PV.[p]lyv) e VV:PVAt}v), r=tleaves(t)]
end

The first specification statement can be refined as shown below by con-
structing a decision tree point-wise equivalent to the input proposition, and
by considering the possible cases of the input proposition p. In the context
of this block, we will work in a generic typing setting 71, where 71 (p) = prop
and 71(t) = dtree. For example, the typing 7[dtree/t] satisfies 7.

t:ftrue, (VV:PV.[p]v) & (VV:PV.{t]}v)];
C,  “Strengthen Postcondition”
t:[true, VV:PV.[p]v & {t]v]
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This post-condition will appear often in the following development. We’'ll
abbreviate it as BUILD(p, t).

t : [true, BUILD(p,t)]
C,  “Introduce Alternation, Local Block, Seq. Comp’n, Str. Post.”
if is_Var(p) then
t: [is_Var(p), t = Node(VarV(p),Leaf(true), Leaf(false))]
else if is_Not(p) then
begin e : dtree.
e : [is=Not(p), BUILD(NotA(p), e)l;
t : [is_ZNot(p) A BUILD(NotA(p), e),Y V:PV.{t}y < = {elv]
end
else
begin a, b : dtree.

a :lis_ And(p), BUILD(AndL(p),a)l;

b: [is_LAnd(p), BUILD(AndR(p),b)];

t : [is_ZAnd(p) A BUILD(AndL(p), a) A BUILD(AndR(p), b),
VVPV.{tlv o {alv A{b}v]

end
fi

The development immediately above could be re-worked into a recursive
procedure which established BUILD for its arguments. Termination would
then be guaranteed because its arguments always decrease in the subprop
ordering. We will do this later, but for the moment we leave the development
as it is.

There are now three undeveloped parts of this program: negating a tree,
conjoining two trees, and checking that the leaves of the final tree are all
true. We will develop the code for the final stage of checking the leaves of
the tree in Section 8.3, and turn to consider the code for negating trees in
Section 8.5. For now, though, consider the sub-problem of conjoining two
trees. We further develop this by considering cases of the two trees a and b.
Let us first define the following abbreviation:

JOIN (t,a,0) =V V:PVAtv < {afv A{b}v

In this context we will work with a generic typing 75 where
{72(t), 72(a), 72(b)} C dtree.
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t: [true, JOIN(t,a,b)]

C,,  “Introduce Alternation”
if is_Leaf(a) then t : [is_Leaf(a), JOIN(t,a,b)]
elseif is_Leaf(b) then ¢ : [is_Leaf(b), JOIN(t,a,b)]
else ¢ : [is_Node(a) A is_Node(b), JOIN(t, a,b)]
fi

The first two specification statements are similar. Note that JOIN (¢, a, b) <
JOIN (t,b,a). Let’s consider a general case JOIN(t,[, n), where [ is a leaf
node. Here we use a typing 73, such that {r3(¢), 73({), 73(n)} C dtree. The
conjunction of the two nodes will be the leaf node (or the other node) when
the Boolean flag in the leaf is false (or true, respectively).

t : [is_Leaf(l), JOIN(t,l,n)]
C,, “Introduce Alternation, Assignment”
if | = Leaf(true) then ¢ := n else ¢ := [ fi

Now let’s consider conjoining two non-leaf nodes. Clearly if the trees are
identical, then we can simply choose one of them:

t : [isZNode(a) A is_Node(b), JOIN (¢, a,b)]
C,, “Introduce Alternation, Assignment”
ifa =0bthent :=a
else t : [a # b Ais_Node(a) A is_Node(b), JOIN(t,a,b)]
fi

However, there’s not much more we can do with this statement at the mo-
ment. We need to produce a well-typed decision tree from the conjunction
of the two trees. However, there’s not yet a straightforward way to tell if the
there are variables shared in the two trees. In particular, we can’t yet easily
show that any resulting tree won’t have repeated variables on any root-to-leaf
path. We leave the further development of this until Section 8.4.

8.3 Reduced Decision Trees

Let us now consider the ultimate specification statement in the main pro-
gram:

r: [true, r = tleaves(t)]

It tests the validity of the final decision tree by checking that all of its
leaves are true. A naive way of checking all of the leaves would involve recur-
sively descending throughout the tree to check each leaf in turn. However, if
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a node has two identical subtrees then we need check only one branch, rather
than both. This simplification is justified because:

tleaves(Node(v, [, 1)) < tleaves(l)

We call trees which do not have identical children ‘reduced trees’ and
define them as follows:

Leaf(b) € rtree
Node(v,l,r) € rtree = v & tvars(l) A v & tvars(r) A
| € rtree A r €rtree Al # r

Now, trivially by induction, all rtrees are dtrees. That is, rtree C dtree,
and from a simple induction and argument from contradiction, we have for
t :rtree:

tleaves(t) = t = Leaf(true)

That is, to check that the leaves of a reduced decision tree are all true, we
need only check that the tree is a true leaf node.

8.3.1 A Data Refinement to Reduced Trees
Recall that the current state of our top-level refinement is as follows.

r:[true, r=VV:PV.[p]v]
ET
begin ¢ : dtree.
t:[true, (VV:PV.[p]v)<e VV:PV.{t}v)];
r:[(VV:PV.[p]ly) e VY V:PV.{t]}v), r = tleaves(t)]

end

The data-refinement that we will perform is trivial: we just replace the
type t : dtree by the type ¢ : rtree in the block above. No change of represen-
tation takes place, and the predicates in our specification statements remain
the same, but we do strengthen the underlying data-type invariant.

t:[true, (VV:PV.[p]v)e VV:PV.{t}v)];

r:[(VV:PV.[p]lv) e YV:PV.{t]}v), r = tleaves(t)]
C Tlrtree/t], Tldtree/t] (A a. k = a)

t:[true, (VV:PV.[p]v)e VV:PV.{t}v)];

r:[(VV:PV.[p]v) e (YV:PV.{t]}v), r=tleaves(t)]

We can refine the block in our main development by data-refining its body
using the above data-refinement. Thus, our current top-level refinement is
now characterised by the following theorem.
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r:[true, =V V:PV.[p]v]
ET
begin t : rtree.
t:[true, (VV:PV.[p]v)e VV:PV{t}v)];
r:[(VV:PV.[p]v) e VYV:PV.{t}v), r=tleaves(t)]
end

In the context of this stronger type of reduced trees, we can refine the
ultimate specification statement to the following constant-time assignment:

C Tetree/s]  “Introduce Assignment”
r:= t = Leaf(true)

8.4 Ordered Decision Trees

We return to the problem of conjoining two non-leaf nodes. Recall that
decision trees have the constraint that variables should not be repeated on
any root-to-leaf path. This allows us to equate a tree’s validity with it having
only true leaves. How can we conjoin two trees and satisfy this condition?
We need a constant-time test which lets us know about all of the variables
in an entire sub-tree. One way to do this is to strictly order the variables in
the tree.

We define otree to be the trees whose nodes have variables which are
greater than the variables of any of their immediate children:

Leaf(b) € otree

Node(wv, [, ) € otree = is_Node(l) = NodeV(l) < v A
is_Node(r) = NodeV(r) < v A
[ € otree A r € otree

By induction, this means that the variable of a node in an ordered tree is
greater than the variables in any of its descendants, not just its immediate
children. Thus the ordering conditions maintain the decision tree conditions,
i.e. otree C dtree.

8.4.1 A Data Refinement to Ordered Trees

In the development dealing with the conjunction of non-leaf nodes, we will
data-refine decision trees d, a, and b to ordered trees. Like our data-
refinement at the top-level to reduced trees, this data-refinement will be
an identity data-refinement which does not introduce a new representation,
but does strengthen the data-type invariant on the underlying typing envi-
ronment. Our data-refinement is as follows:
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ifa =bthent :=a
elset :[a # b A is_Node(a) A is_Node(b), JOIN (t,a,b)]
fi

ETQ[otree,otree,otree/a,b,t},Tz (>\ kak= (l)
ifa=>bthent:=a
elset :[a # b A is_Node(a) A is_ZNode(b), JOIN (t,a,b)]
fi

Our new stronger typing environment provides us with opportunities for
further procedural refinement. We will declare three new program variables
v, z, and y, which we will use to construct our new tree:

t:[a # b Ais_Node(a) A is_Node(b), JOIN(t,a,b)]
C 7y otree,otree,otree/ab,i]  Introduce Local Block, Seq. Compn”
begin v : V, z : otree, y : otree.
v,z,y : [a # b Ais_Node(a) A is_Node(b), JOIN (Node(v,z,y), a,b)];
t:[a # b Ais_Node(a) A is_Node(b) A JOIN (Node(v, z, y), a, b),
JOIN (t, a,b)]
end

Let us look at the first specification statement. In this context we define
T4, an abbreviation for our typing environment:

T4 = Ty[otree, otree, otree, V, otree, otree/a, b, t, v, z, y|.

We choose the value of the new variable v to be the greatest of the two
nodes’ variables. We choose x and y depending upon the following equiva-
lences. When A= (P = X)A (=P =Y), and
B=(Q= W)A (- Q= Z), then we have the following:

ANB & (P=(XAW))AN(-P= (Y ANZ)) when P=@Q
ANB & (P=(XAB)AN(—-P= (Y AB))
ANB & (Q=>AANW)ANQ=(ANZ))

So, the refinement is as follows:
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v,z,y : [a # b Ais_Node(a) A is_Node(b), JOIN (Node(v,z,y), a,b)]
C,  “Introduce Alternation”
if NodeV(a) = NodeV(b) then
v,z,y : [a # b Ais_Node(a) A is_ZNode(b) A NodeV(a) = NodeV (b),
v = NodeV(a) A
JOIN (z,NodeL(a),NodeL(b)) A JOIN (y,NodeR(a), NodeR(b))]
else if NodeV(a) < NodeV(b) then
v,z,y : [a # b Ais_Node(a) A is_ZNode(b) A NodeV(a) < NodeV (b),
v = NodeV(b) A
JOIN (z, a,NodeL(b)) A JOIN (y, a,NodeR(b))]
else
v,z,y : [a # b Ais_Node(a) A is_Node(b) A NodeV(b) < NodeV (a),
v = NodeV(a) A
JOIN (z,NodeL(a), b) A JOIN (y,NodeR(a), b)]
fifi

In order to satisfy the well-formedness side-conditions for this refinement,
we need to know that v is greater than any variable in the created subtrees
z or y. We strengthen our definition of JOIN to the following:

JOIN (t,a,b) = tvars(t) C tvars(a) U tvars(b) A
VVPV Aty & {alv A{blv

The previous development can be replayed under this stronger definition,
and it allows us to prove the the well-formedness conditions discussed above.

We will leave the development of the remaining specification statements
until later, and now turn to developing code to negate a decision tree.

8.5 Negation Decision Trees

We can negate a decision tree by negating the value of all of its leaves. We
can define a tree negation operator negtree : B x tree — tree as follows:

negtree(p, Leaf(b)) = Leaf(p = b)
negtree(p, Node(v, [, 7)) = Node(v, negtree(p, [), negtree(p, r))

This is defined over a Boolean p for later convenience. This operator has our
desired properties. For ¢ : tree and V : PV,

{Inegtree(false, 1) [} v < (= {|¢]}v)
negtree(true, t) =t
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However, to implement tree negation in this naive way would be expen-
sive. Brace, Rudell and Bryant [21] proposed an optimisation to the standard
BDD algorithm to quickly negate a BDD. The idea is for edges of the tree to
have a negation flag, which indicates whether the incident tree is to be read
as having been negated. This allows a constant-time negation operation:
simply flip the negation flag for the tree under consideration.

We follow this idea, and define a type of proto-negation trees Ntree as
follows:

Ntree = NLeaf | NNode((V x Ntree x B x Ntree))

We define discriminators is_ZNLeaf and is_ZNNode, and destructors NNodeV,
NNodeL, NNodeN and NNodeR in the normal way. The Boolean value in-
fluences the interpretation of the right subtree. Brace, Rudell and Bryant
discuss how having flags on each subtree can break the canonicality of BDDs.
They leave space for flags on all edges, but impose constraints limiting left
edges to true. We simply exclude this redundancy from our representation.

We can recover a tree from a proto-negation tree by using the tree_of_Ntree :
Ntree — tree operator defined as follows:

tree_of _Ntree(NLeaf) = Leaf(true)
tree_of_Ntree(NNode(v, [, p,r)) =
Node(v, tree_of_Ntree(l), negtree(b, tree_of_Ntree(r)))

Proto-negation trees do not allow us to represent all trees. For example,
there is no representation of Leaf(false). We define negation trees proper as
proto-negation trees paired with a flag to influence the interpretation of the
whole tree:

ntree = B x Ntree

We define discriminators is_nleaf and is_nnode, and destructors nneg,
nvar, and nrneg by lifting from the corresponding operators on proto-negation
trees, as follows:

is nnode(t) = is_NNode(snd(t)) nneg(t) = fst(t)
is_nleaf(#) = is_NLeaf(snd(t)) nvar(¢) = NNodeV(snd(t))
nrneg(t) = NNodeN(snd(t))

The ‘desctructors’ for left and right subtrees (nleft, and nright) result in
negation trees which take into account interpretation under the various flags:

nleft(t) (nneg(t), NNodeL(snd(t)))
nright(t) (nneg(t) = nrneg(t), NNodeR(snd(¢)))

~
~
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We can extract a tree from a negation tree by using the tree_of_ntree :
ntree — tree operator defined as follows:

tree_of ntree(t) = negtree(fst(t), tree_of_Ntree(snd(%)))

So, the negation of a negation-tree can be performed by the following
constant-time operation:

neg ntree(t) = (- fst(¢),snd(¢))
It has our desired property. For ¢ : ntree, and V : PV, we have:

{ tree_of _ntree(t) [} v < (= { tree_of _ntree(neg_ntree(t)) [} v)

8.5.1 A Data Refinement to Negation Trees

The trees in our negation specification are decision trees. We define proto-
negation decision trees dNtree to be those proto-negation trees whose corre-
sponding trees are decision trees:

dNtree = {t:Ntree | tree_of Ntree(t) € dtree}
Decision negation trees can then be defined as follows:
dntree = B x dNtree

We need to data-refine the whole context for tree negation. For space
reasons we do not show it, but it is a direct piece-wise data-refinement with
the following relation:

C Tldntree/t], Tldtree/t] (A b a. a‘t = tree_of_ntree(k‘t) A a dsub {t} =k dsub {t})

The abstract and concrete values of program variable ¢ are represented by
a‘t and k‘t respectively. The last conjunct is similar to the frame of a framed
specification statement, and ensures that variables not under consideration
are not affected by the data-refinement.

In this new more concrete context, we can refine the negation operation
to a more efficient-looking specification statement:

t : [is_Not(p) A BUILD(NotArg(p),e), VV:PV.{t|}, < (= {eltv)]

EB[dntree/e]
t : [is-Not(p) A BUILD(NotA(p), tree_of_ntree(e)), ¢ = neg ntree(e)]
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8.6 Reduced Ordered Negation Trees

In our refinement so far we introduced reduced trees and negation trees to
allow us to implement constant time tests for the validity of a tree and
tree negation, and also ordered trees in order to simplify the conjunction
of tree nodes. These constraints are all orthogonal and do not interact in
our refinement in any deliterious way. In fact, reduced ordered trees are
canonical. For reduced-ordered decision trees defined as follows:

rotree = rtree N otree

We have, for a, b : rontree:
VV:PVA{allv e {b]lv)=(a=0)

This observation is Bryant’s important contribution [23] to the popu-
larity of BDDs, and is critical to the efficiency of BDD algorithms. In a
graph with maximal sharing of identical subgraphs, canonicality means this
is also maximal sharing of logically equivalent subgraphs. Thus, equivalent
subexpressions are never recomputed.

We now fit our constraints on reduced and ordered trees onto our datatype
of negation trees, and then complete the development of an executable pro-
gram.

8.6.1 A Data Refinement to Reduced Ordered Nega-
tion Trees

We define reduced ordered proto-negation trees, and then reduced ordered
negation trees as follows:

{t:Ntree | tree_of Ntree(t) € rotree}
B x roNtree

roNtree =
rontree =

We data-refine all of the code fragments we have developed so far, chang-
ing the value of any occurrences variables v of type otree or rtree to variables
v with value tree_of _ntree(v) and type rontree. Tests is_Leaf become is_nleaf,
and constants Leaf(b) become (b, NLeaf). The data-refinements are similar
to those shown previously, and all include a framing condition to constrain
the effect of the data-refinement.
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8.6.2 Introducing Procedures and Recursive Procedures

We now collect together our code-fragments, and introduce (recursive) pro-
cedures to implement our algorithm.

We start with the current state of our top-level development, adapted
from Section 8.3:

begin ¢ : rontree.
t : [true, BUILD(p,tree_of_ntree(t)];
r:=t = (true, Leaf(true))

end

Using our recursive procedure introduction rule for framed specification
statement interfaces, we can introduce the Build procedure by refinement as
follows:

|:T
rec Build(value p : prop,result ¢ : rontree)
int =t : [true, BUILD(p,tree_of_ntree(t))]
var =V : prop, p subprop V
imp=t:[p=1V, BUILD(p,tree_of_ntree(t))]
in
begin ¢ : rontree.
t : [true, BUILD(p,tree_of_ntree(t)];
r =t = (true, Leaf(true))
end

The initial specification statement is a (trivial) instance of Build’s inter-
face and so, using the refinement-monotonicity of initial calls to recursive
procedures, we can refine the initial specification statement to Build(p,t):

=T
rec Build(value p : prop, result ¢ : rontree)

int =t : [true, BUILD(p,tree_of_ntree(t))]
var =V : prop, p subprop V'
imp=t:[p=1V, BUILD(p,tree_of_ntree(t))]
in
begin t : rontree.

Build(p, t);

r:=t = (true, Leaf(true))
end
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We then refine the implementation of Build by appealing to the refinement-
monotonicity of recursive procedure implementations, and by using an adap-
tation of the code fragment shown in Section 8.2.2. The specification state-
ments containing postconditions BUILD are instances of the interface to the
Build procedure, and as they decrease their instance of p in the subprop
ordering, we can refine them to calls to Build.

In order to implement the JOIN specification statement, we declare a
recursive procedure Join with the following declaration:

rec Join(value a : rontree, value b : rontree, result ¢ : rontree)
int=¢: [true, JOIN (tree_of_ntree(a), tree_of_ntree(b), tree_of_ntree(t))]
var = T :tree X tree,

(tree_of_ntree(a), tree_of_ntree(b)) (subtree x x subtree) T

The x x operator is the lexicographic ordering on pairs, as the Join pro-
cedure may reduce either of its first two arguments. The development follows
in a manner largely similar to the Build procedure. During the development
of the implementation to Join we introduce two procedures: JoinLeaf for
joining leaves, and JoinNode for joining nodes. JoinNode contains recursive
calls to Join. We present the final code for our algorithm in Appendix D.

8.7 Remarks

The data refinement here has been presented in several stages. We have
incrementally imposed constraints, which have allowed us to develop parts of
our program efficiently. This shows us where each part of our final data-type
invariant is used:

decision: Decision trees let us test validity of a tree by checking that its
leaves are true.

reduced: A reduced decision tree lets us test the validity of a tree by
checking that it is the true leaf.

ordered: Ordered trees are decision trees, and the ordering constraint al-
lows us, when conjoining trees, to determine in constant time that the
variable in the conjoined tree is different to any of the variables occur-
ring in the subtrees.

negation: Negation trees allow us to implement tree negation operation in
constant time.
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The final program is not a fait accompli—other implementations are cer-
tainly possible, and carving the problem in other ways may reveal other
insights.

Our semantics seems to serve as a nice level of abstraction for tackling
correctness issues in program development, where we have avoided details
concerning machine or programming language peculiarities. The perhaps
laborious nature of the development given here is essentially due to the nature
of the problem and our chosen exposition, rather than being due to ‘artificial’
hurdles imposed by the semantics of our refinement langauge.
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Chapter 9

Conclusion

Refinement tools must give ready access to the standard results in classical
mathematics, must be expressive enough to represent all of the statements
in our refinement language, should support the process of our refinement
methodology, and should facilitate the valid realisation of completely devel-
oped programs. This dissertation has presented new ideas and techniques
which endeavour to address these requirements.

We described a generalised form of window inference which allows the
transformation of terms under non-preorder relations. We can make use of
this generality in the transformation of programs under the data-refinement
relation. Another benefit of this inference scheme is that it allows window
opening at various points on the top-level term. The form of window inference
rules motivated the form of many of the refinement rules provided.

Our refinement theory is mechanised in the theorem prover Isabelle/ZF.
Isabelle is an LCF theorem prover, whose rigorous support provides us with
the security to push the boundaries of expressing complex and subtle refine-
ment rules. The semantics for our refinement language is given definitionally
in Isabelle/ZF, a logic of untyped set theory. Using a shallow embedding
within a classical logic gives us license to freely mix our refinement logic
with ordinary logic. These considerations are the basis for our confidence
that the refinement rules presented in this thesis are sound and that deriva-
tions done in the tool will be logically accurate. Isabelle/ZF’s set theory
is a mechanisation of standard classical mathematics. The large collection
of mathematical results stemming from this basis is available both for the
development of the refinement theory, and for the development of theories of
particular application domains.

As one would hope, most of the refinement rules presented in this thesis
are similar to existing rules in the literature. Nonetheless, we have also
presented some newly mechanised refinement rules, as well as some original
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refinement rules not previously seen in the literature.

We presented newly mechanised rules for introducing variable assignment
statements and for transforming framed specification statements. Our ex-
plicit representation of variable names makes it possible to express these
statements and rules. These rules resemble previously mechanised rules for
state assignment and nondeterministic assignment statements [2, 13], but
use explicit variable names to limit the effect of the statements. Our rules
for introducing and refining local blocks appear similar to earlier mechanised
rules for local blocks, but have a different effect in that they can hide variable
names appearing in a higher scope.

Named program variables are central to programming languages, and also
to the refinement calculus. However, unlike normal programming languages,
the refinement calculus allows us to introduce arbitrary abstract types for
local program variables. This makes it more difficult to represent state types
for refinement languages. Previous representations in simply-typed frame-
works had either not represented variable names, or else had fixed the range
of types for program variables. Isabelle/ZF provides us with the flexibility
to represent states as dependently typed functions from variable names to
under-specified families of types. This has allowed us to explore definitions
for constructs such as framed specification statements, variable assignment,
local blocks and procedure parameterisation which have not previously been
represented in a uniform way within a classical logic. Our parameterisation
mechanism is also novel in performing the instantiation of multiple formal
parameters in parallel, rather than sequentially, as suggested by previous
presentations [70].

The expressiveness of Isabelle/ZF is achieved at the cost of explicit typ-
ing. Bounding sets must be supplied for many set-theoretic operators. We
have been able to ameliorate this burden of the explicit representation by
using the meta-logic of Isabelle/ZF to lift our set-transformer semantics to
predicate transformers. In our set-transformer representation of weakest pre-
condition semantics, we represented conditions and Boolean expressions as
sets of states, and value-returning expressions as object-logic functions on
states. In the lifted language, conditions and Boolean expressions become
predicates on states, and value-returning expressions become meta-level func-
tions. Moreover, when we lift the set-transformer language, we can abstract
the state-type so that we are only required to mention the state-type once at
the top of a program. Lifted statements implicitly pass the state type to sub-
components. When we fixed the structure of our program states to represent
program variables, we were able to revisit the lifting of our set-transformer
language so as to exploit this extra structure. Instead of abstracting the
state-type, we instead abstracted the typing for the state type. This served
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as a convenient abbreviation, but also facilitated the presentation of type
updating operators for blocks and parameterisation. These statements im-
plicitly modify the state type passed to sub-components.

Using a shallow embedding within a classical logic lets us freely mix our
refinement theory with ordinary logic. This has proved critical for stating
and proving refinement rules for interfaced recursion blocks and (recursive)
procedures. We have introduced original rules for interfaced recursion blocks
and (recursive) interfaced parameterised procedures. We contextually embed
refinement assumptions in assertion statements within another refinement,
which allows us to prove rules supporting step-wise refinement of recursion
blocks and (recursive) procedures. These rules make significant use of Is-
abelle’s meta-logic. They are schematic rules where the expression of obli-
gations is delayed until the introduction of a procedure call. This allows us
to make procedure calls from any type, and with any actual arguments. The
appropriateness of the type and arguments is determined by side-conditions
which are instantiated by the meta-logic when we make use of the schematic
assumptions.

Our data-refinement rules are novel in changing the data-refinement re-
lation within nested local blocks or procedures. This allows us to perform a
data-refinement top-down in one fell swoop. Earlier presentations of data-
refinement would have us repeatedly perform separate data-refinements on
nested blocks, and/or compose the results in a bottom-up fashion [78, 76,
14, 68].

Our non-trivial case study demonstrated that our refinement theory is
applicable to the refinement and data-refinement of a non-trivial program
involving recursive procedures.

9.1 Future Work

This dissertation opens up many opportunities for further work. There is
scope to investigate our inference environment, to extend our refinement lan-
guage, to modify our representation of states, and to work on strengthening
the link between our refinement language and real world programming lan-
guages.

Flexible window inference as presented in this dissertation is a general
framework for transformational reasoning. It admits arbitrary composable
relations, and allows window opening at multiple points. Further investiga-
tion is required to determine a set of constraints or modes of use which will
make this general framework into a readily usable interactive inference tool.
Work by von Wright [103] addresses this issue.
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The procedural refinement and data-refinement rules we have presented
take advantage of state-dependent contextual information when it is explic-
itly carried in the pre-condition of specification statements. However, a more
general approach to using contextual information would be to use Nickson
and Hayes’ program window inference [82, 83]. This raises a general problem
for the LCF theorem proving community, as this kind of ‘modal’ context is
not currently well supported by Isabelle or other LCF theorem provers.

The refinement language presented in this thesis made use of the expres-
siveness of untyped set theory to represent statements not seen in earlier
similar mechanisations. However, there are other constructs seen in the re-
finement literature: we have not considered multiply guarded alternation or
looping statements, have not given a complete rule for data-refinement, and
have not included frames for adding and removing program variables during
data-refinement. Adding these statements and backward data-refinement
in our setting should be possible. Nonetheless, there are more exotic con-
structs which would require us to change our semantic setting. These include
trace-invariants [69, 97] exception statements and loops with multiple exits
[8, 91, 55], constructs for parallelism [10, 18], probabilistic refinement [74],
and real timed refinement [33, 46]. We could also change our semantics
for expressions to allow side-effects. This has not been examined closely in
the refinement literature, but work has been done in this area for program
verification [19, 17, 84].

The procedures described in this thesis do not admit global variables:
we chaotically set the local state before applying the initialisation part of
the parameterisation. It would not be enough to chaotically set just the
formal parameters, because a procedure is well-typed only at its declaration
type, and can’t depend on its calling type. We could remedy this situation
by attaching a list of used global variables to our procedure declarations,
similar to that used in proof rules given for the verification of procedures.
[39, 30, 62] It would then be possible to establish a uniform declaration
state respecting the type of these global variables. However, the situation
then is still not ideal: the representation of our state as a simple mapping
from variables to values would mean that the ‘global” variables used in our
procedure implementations would in effect be dynamically bound to the most
local variable with that name. To properly model global variables, we should
use a more sophisticated representation of states, say as pair of mappings:
one from variables to locations and another from locations to values. This
state type would allow us to more accurately model global variables, aliasing,
pointers, and array indexing. The construction of a refinement language
using this state type should be able to re-use all of the general set transformer
work presented here in Chapter 3.
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These considerations lead us to a more general question: how should we
deal with the correspondence between our formal model of program develop-
ment and actual programming languages in the real world? Working at the
formal level provides us with a nice separation of concerns from the particular
limitations of concrete compilers, operating systems and hardware. However,
it could be argued that our refinement language is so abstract that there is
no clear link between our developments and programs in the real world. The
standard answer to this question in the refinement community is to take a
‘leap of faith’, and transliterate concrete refinements into programs in some
actual programming language. A more principled way of doing this would be
to transform our concrete refinement to another formally defined program-
ming language whose semantics can be used by a programmer as the main
reference in the construction of a compiler for that language. This could
be achieved by using a structured operational semantics as our language
specification, or else by investigating operational interpretations of weakest
precondition semantics. In going from the formal to the real, there will al-
ways be some extra-logical leap, but it should be possible to demonstrate
that this is valid.
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Appendix A

Notation

We summarise the formal notation used in this thesis. Where appropriate
we provide Isabelle’s corresponding ASCII syntax. For notation which is
identical in the thesis and in the mechanisation, we list Isabelle’s syntax as

~/,

A.1 Isabelle’s Meta-Logic

A=1B Macro abbreviation.

A=RB A==B Meta-level equality.

A=—B A ==>B Meta-level implication.

F(z) F(x) Meta-level function application.
Az.F(z) %x. F(x)  Meta-level lambda abstraction.
Nz.P(z) !'x. P(x) Meta-level universal quantification.

A.2 TIsabelle/ZF

All of the operators listed here are standard in Isabelle/ZF, with the excep-
tion of domain restriction, domain subtraction, and function overriding.

if(P,A,B) ~ Conditional expression.

Viz.P(zx) ALL x. P(x) Unbounded universal quantification.
dz. P(x) EX x. P(x) Unbounded universal quantification.
Vz:A.P(z) ALL x:A. P(x) Bounded universal quantification.
Jz:A. P(z) EX x:A. P(x) Bounded universal quantification.
ﬂz.A F(z) INT x:A. F(x) Indexed intersection of family of sets.
UZ.A F(z) UN x:A. F(x) Indexed intersection of family of sets.
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PA Pow(A) Power set of set A.

{z:A| P(z)} {x:A. P(x)} Set comprehension.
{F(z).z:A} {F(x). x:A} Image of meta function F' on A.
{z.y:A ‘ P(z,y)} A{x. y:A, P(x,y)} Replacement of z for y s.t. P(z,y).
(a, b) ~ Ordered pairing.
I[IxyY Pi(X,Y) Dependent function space.
I,.x. Y(z) PROD x:X. Y(x) Syntax for above.
fia ~ Function application.

“a ~ Relation image.
Az: A F(x) lam x:A. F(x) Lambda abstraction.
dom(f) domain (f) Domain of function.
f dres g f domres A Domain restriction of f with A.
f dsub g f domsub A Domain subtraction of f with A.
f@dg f fovr g Function overriding of f with g.
wf , (R) wf [A] (R) Relation R is well-founded on A.
Ifp ,(F) 1fp(A,F) Least-fixed point of F' on A.

A.3 Set Transformer Syntax

Below is the syntax used for the statements and auxilliary operators described
in Chapters 3 and 5.

Skip 4 ~ Skip.

a; b a Seq b Sequential composition.

Abort 4 ~ Abort.

Magic 4 ~ Magic.

Chaosy ~ Chaos.

Choose(w) 4 ~ Chaotic variable choice.

{P}, Assert(P,A) Assertion.

(P),— Guard (P,A) Guarding.

[P] 4 Nondass (P,A) Non-deterministic assignment.
P, Ql, Spec(P,Q,A) Fixed specification.

TP, Ql, Sspec(P,Q,A) Free specification.

w: [P, Q], Fspec (w,P,Q,A) Framed specification.

{R}, Rassert (R,A) Relational assertion.
o=pi.R(i,0) o =(A) i. R(i,0)  Syntax for above.

[R] , Rnondass (R,A) Relational non-deterministic assignment.
0:=41i.R(i,0) o :=(A) i. R(i,0) Syntax for above.

(F) 4 Fassign(F,A) State-assignment.
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vi=4 F Assign(v,E,A) Single-variable assignment.

(ﬁ) " Massign(M,A) Multiple-variable assignment.

alb a Ach b Binary angelic choice.

allb a Dch b Binary demonic choice.

ifgthenaelsebfi Iffi(g,a,b) Alternation.

|_|A C Achoice(C,A) Generalised angelic choice.

|_|A C Dchoice(C,A) Generalised demonic choice.

rea N. F(N)er Mmu(%N. F(N),A) Recursion.

while ¢ do cod  Do(g,c) While-do looping.

cony z. c(x) con(A) x. c(x)  Logical constant.

varg z. c(x) var(A) x. c(x)  Logical variable.

con z:X. ¢(z) ~ Bounded logical constant.

var z: X . c(x) ~ Bounded logical variable.

begin, v. cend  Block(v,c,A) Single-variable block.

begin 4 ﬁ c end Mblock(D,c,A) Multiple-variable block.

Paramy(c, I, F) ~ Parameterisation.

Dom(C) Domain (C) Domain of family of set functions.

Pa s hptrans(A,B) Hetrogenous set transformers.

Pa ptrans(A) Homogenous set transformers.

My s hmtrans (A,B) Hetrogenous monotonic set transformers.
My mtrans (A) Homogenous monotonic set transformers.
monotonic(c) ~ Subset-monotonicity of set transformer c.
strict(c) ~ Strictness (‘feasibility’) of set transformer c.
terminating(c) ~ Universal termination of set transformer c.
monotype 4 (F) ~ Typing for meta function F.
pmonotonic 4 (F) ~ Refinement-monotonicity for meta function F'.
regular 4 (F) ~ Typing and refinement-monotonicity.

a T b arefs b Refinement.

{P} c{Q} Correct(P,c,Q)  Total correctness.

The syntax for interfaced recursion is as follows.
rea z:T,N Jc(z). d(z,N)er Bmu(T, %x. c(x), %x N. d(x,N))

A.4 Lifted Set-Transformer Syntax

Following is the syntax used for the statements and auxilliary operators de-
scribed in Chapter 4.
M, MTRANS(A) Monotonic predicate transformer.
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a E4 00 a REFS(A) b Refinement.

Skip SKIP Skip.

a; b a SEQ b Sequential composition.

Abort ABORT Abort.

Magic MAGIC Magic.

Chaos CHAOS Chaos.

{P} ASSERT (P) Assertion.

(P)— GUARD(P,A) Guarding.

[P] NONDASS (P) Non-deterministic assignment.
[P, Q] SSPEC(P,Q) Free specification.

{R} RASSERT (R) Relational assertion.
o=1.R(i,0) o =1i. R(i,0)  Syntax for above.

[R] RNONDASS(R) Relational non-deterministic assignment.
0:=1.R(i,o0) o := i. R(i,0) Syntax for above.

(F) FASSIGN (F) State-assignment.

vi=F ASSIGN(v,E) Single-variable assignment.
(M) MASSIGN (M) Multiple-variable assignment.
allb a ACH b Binary angelic choice.

allb a DCH b Binary demonic choice.

if gthenaelse b fi IFFI(g,a,b) Alternation.

re N. F(N)er MMU(%N. F(N))  Recursion.
while ¢ do c od  WHILE g DO ¢ While-do looping.

con . ¢(x) CON x. c(x) Logical constant.
var . ¢(z) VAR x. c(x) Logical variable.
con z:X. ¢(x) CON x:X. c(x)  Bounded logical constant.
var z: X. ¢(z) VAR x:X. c(x) Bounded logical variable.

The syntax for interfaced recursion is as follows.
rez:T,N Jc(z). d(x,N)er RE x:T, N SFER c(x). d(x,N) ER

A.5 Typing-Lifted Set-Transformer Syntax

Following is the syntax used for the statements and auxilliary operators de-
scribed in Chapter 6. All Isabelle-syntax statements are all caps, but other-
wise are often equivalent to the notation used in this dissertation.

V VId Variable names.

S, VState(tau) State type of typing.

T[T /v] taulT//v] Typing substitution.
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THS

a T, b

MT

P:M

Skip

a3 b

Abort

Magic

Chaos
Choose(w)
(P}

(P)—

[P]

[P, Q]

w: [P, Q]
{R}

[R]

(F)

vi=F

(M)

alb

allb

if g then a else b fi
re N. F(N)er
while ¢ do ¢ od
con z. c(x)

var z. c(x)

con z:X. ¢(z)
var z: X. c(x)
begin v : T. ¢ end
begin D. ¢ end
PARAM(c, S, I, F)

T TOVR S

a REFS(T) b
MTRANS (T)
(1'S a. P(a):MTRANS(S))
a SEQ b
ASSERT (P)
GUARD (P)
NONDASS (P)
SSPEC(P,Q)
FSPEC (w,P,Q)
RASSERT (R)
RNONDASS (R)
FASSIGN (F)
ASSIGN(v,E)
MASSIGN (M)

a ACH b

a DCH b

~J

MMU (%N. F(N))

22l

Typing overriding.
Refinement.

Monotonic predicate transformer.
Mtrans procedure call.

Skip.

Sequential composition.
Abort.

Magic.

Chaos.

Chaotic variable choice.
Assertion.

Guarding.

Non-deterministic assignment.
Free specification.

Framed specification.
Relational assertion.

Relational non-deterministic assign.

State-assignment.
Single-variable assignment.
Multiple-variable assignment.
Binary angelic choice.
Binary demonic choice.
Alternation.

Recursion.

While-do looping.

Logical constant.

Logical variable.

Bounded logical constant.
Bounded logical variable.
Single-variable block.
Multiple-variable block.
Parameterisation.

The syntax for interfaced procedures, and recursive procedures is as fol-

lows.

proc P(D)int =1 imp = Bin C(P)

PROC P(D) INT

I IMP

B IN C(P)

rec P(D)int=1Ivar=z: T, V(z)imp=B(z,P)in C(P)

REC P(D) INT

I VAR
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x:T, V(x) IMP

B(x,P) IN C(P)



A.6 Case Study

All of the operators listed here are standard in Isabelle/ZF, with the excep-
tion of domain restriction, domain subtraction, and function overriding.
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[[p]] 1%
tree

Leaf(b)
Node(wv, [, r)
is_Leaf ()
is_Node(t)
LeafT(t)
NodeV(t)
NodeL(t)
NodeR(t)
{Iphv
tleaves(t)
tvars(t)
negtree(t)
dtree

rtree
otree
rotree
Ntree
NLeaf

NNode(v, [, p, )

is_NLeaf ()
is_NNode(t)
NNodeV(t)
NNodeL(t)

variable

is_VAR(p)
is_NOT (p)
is_AND(p)
VAR_var (p)
NOT_arg(p)

AND_left (p)
AND_right (p)
mprop (p,V)
TreeLeaf
TreeNode(v,1,r)
is_TreelLeaf (t)
is_TreeNode (t)
TreeLeaf_tag(t)
TreeNode_var(t)
TreeNode_left (t)
TreeNode_right (t)
mtree(p,V)

~J

treevars(t)

AN S SR

NTreeLeaf
NTreeNode(v,1,p,r)
is_NTreeLeaf (t)
is_NTreeNode(t)
NTreeNode_var(t)
NTreeNode_left (t)
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Variables allowed in a proposition.

A language of propositions.

A constructor for propositions.

A constructor for propositions.

A constructor for propositions.

A discriminator for propositions.

A discriminator for propositions.

A discriminator for propositions.

A destructor for propositions.

A destructor for propositions.

A destructor for propositions.

A destructor for propositions.

The meaning of a proposition.
Boolean-leaved binary trees.

A constructor for trees.

A constructor for trees.

A discriminator for trees.

A discriminator for trees.

A destructor for trees.

A destructor for trees.

A destructor for trees.

A destructor for trees.

The meaning of a tree.

A tree has all true leaves.

The set of variables in a tree.
Negating all the leaves of a tree.
Decision trees.

Reduced trees.

Ordered trees.

Reduced ordered trees.

Proto-negation trees.

A constructor for proto-negation trees.
A constructor for proto-negation trees.
A discriminator for proto-negation trees.
A discriminator for proto-negation trees.
A destructor for proto-negation trees.
A destructor for proto-negation trees.



NNodeN(t)
NNodeR(t)
tree_of_Ntree
dNtree
roNtree
ntree
is_nleaf(t)
is_nnode(t)
nneg(t)
nvar(t)
nrneg(t)
nleft(t)
nright(t)

tree_of _ntree(t)

dntree
rontree

NTreeNode_rneg(t)
NTreeNode_right (t)

is_ntreeleaf (t)
is_ntreenode(t)
ntree_neg
ntree_var
ntree_rneg
ntree_left
ntree_right

~J
~J

~J
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A destructor for proto-negation trees.
A destructor for proto-negation trees.
The tree got from a proto-negation tree.
Proto-negation decision trees.
Reduced ordered proto-negation trees.
Negation trees.

A ‘discriminator’ for negation trees.
A ‘discriminator’ for negation trees.
A ‘destructor’ for negation trees.

A ‘destructor’ for negation trees.

A ‘destructor’ for negation trees.

A ‘destructor’ for negation trees.

A ‘destructor’ for negation trees.

The tree got from a negation tree.
Negation decision trees.

Reduced ordered negation trees.



Appendix B

Definitions

B.1 Set Transformers

Here we list the definitions of statements and auxilliary operators described
in Chapters 3 and 5. For statements defined in terms of the domain of one
of their sub-components, we also list the simplified equivalent forms which
assume that the sub-components are well-typed.

B.1.1 Atomic Statements

Skip, = Aq:PA.q Magic, = Aq:PA. A
Chaosy = Mq:PA.if(A=gq, A, 2) Aborty = MNq:PA. o
Choose(w), = Aq:P(A).{i:A| {0:A] idsubw = odsubw} C ¢}
{P}, = Aq¢:PA. PNy
(Q),— = Mq:PA.(A-Q)Ugq
(R, = Aq¢:PAIf(Q C q,A, 2)
P, Qly = Ag:PAPN((A-Q)Uq)
TP, Ql, = Aq:PAf(QC q,P,0)
w:[P, Q, = Aq¢:P(A).{i:A| iecPA
{0:A| 0 € Q Aidsubw = odsubw} C ¢}
{R}, = MNq:PA{s:A| R{s}nq+# o}
[Rl, = MNq:PA.{s:A| R“{s} C ¢}
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We use the following sugared syntax for relational assertion and non-
deterministic assignment when the relation is constructed by set comprehen-
sion.

o=x1i.R(i,0) = {{{i,o):Ax A | R(i,0)}},
0:=414.R(i,0) = [{(i,0):Ax A| R(i,0)}],

With these abbrevations, we have the following equivalences.

0=414.R(i,0) = ANq:PA{i:A| {o:A| R(i,0)}Nq+# @}
0:=41.R(i,0) = ANg:PA{i:A]| {0:4| R(i,0)} C ¢}

The various forms of assignment are defined as follows.

Aqg:PA. {s:dom(F) | F's € ¢}
A q:P(A). {s:dom(M) | s ® F's € ¢}
Aq:P(A). {s:dom(E) | s["*/,] € ¢}

~~
3
~
b
I

-~
~

When F,E, M : B — X, we have the following equivalences for assign-
ment statements.

(FY, = Aq:PA{s:B| F's€q}
vi=4E = MNq:P(A).{s:B| s["*/,] € ¢}
(ﬁ)A = MNq:P(A).{s:B| s® F's € ¢}

B.1.2 Compound Statements

a; b = A g:dom(b). a'(b'q)
if g then belse ¢ fi = \ ¢g:dom(b) U dom(c).
(91 b°q) U ((U(dom(b) U dom(c)) — g) N c'q)
aldb=X\qg:dom(b) Udom(c).b‘qU c‘q
aMb=X\qg:dom(b) Udom(c).b‘qN cq
|_|AC£)\q:]P’A.UC:C ¢
[TaC=ag:PAN .
cong z:T. ¢(z) =\ q:PA. Ue:T.c(e)‘q
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varg z:T. c(z) =Xq:PA.Ne: T.ce)q

2) = X ¢:Dom(c). {s:UDom(c) | Vv.s € c(v)‘q}
er=[ 14{c:Ma| F(c) C ¢}

(

con 7. ¢(z) = A ¢:Dom(c). {s:(JDom(c) | Fv.s € c(v)q}
var z. ¢

req X. F(X)

while ¢ do ¢ od = re : X. if g then c; X else SkipUdom(c) fier

Udom c
begin, v. ¢ end = store4 s. Choose({v})UJ(dom(c)), A;
c; (A z:U(dom(c)). z[s‘v/v]) ,
begin, . ¢ end = store4 s. Choose(v)U(dom(c)), 43
¢; (Az:U(dom(c)). z & (s dres w)) ,

Param(c, I, F') = store, i. ChaosU(dom(c)),A;

(As:U(dom(c)). s @ [(i»U(dOm(c))’

3

(As:U(dom(c)). i ® F(s)) ,

Interfaced recursion is defined in terms of raw recursion and assertion
statements.

reqaz:T,N JI(z). c(z,N)er=
rea N.cong z:T. {{_:A| I(z) T N}},;c(z,N)er

We can prove various simpler equivalences for compound statements, as
follows For b, ¢ : P4 p we have:

if gthenbelsecfi=Aqg:PA.(¢gnNbq)U((A—g)Nciq)
bUuc=Aqg:PA.b'qUcq
bMec=Mqg:PA. b'qgNciq
a0 =Xq:PA. a'(b'q)
while g do ¢ od =rey X. if g then c; X else Skip 4 fier

If ¢(e) : Pa,p for all e, then Dom(c) = P A and so we have:

conz. c(z) = Aq:PA.{s:A| v.s € c(v)'q}
var 7. c(z) = A q:PA. {s:A| Vuv.s € c(v)'q}
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And when ¢ : Pp, we have the following equivalences.

begin, v. ¢ end = store, s. Choose({v})B, A4; ¢; (Az:B.z[s'v/v]),
begin, . c end = store, s. Choose(v)B, A; c; (A\z:B.z @ (s dres w)) ,
Paramy(c, I, F') = storey i. Chaosg a5 (As:B.s @ I(i))g;¢;(As:B.i® F(s)),

B.1.3 Auxilliary Operators

Pa s

Pa
monotonic(c)
Muy,s

My

strict(c)
terminatingc

monotype , (f)
pmonotonic 4 (f

f

)
)
Dom(¢)

(
regular 4 (
(

I

1 1l

1l

1P 1P P 1

PA—PB

Pa,a

Vab:dom(c).a Cb=c'aCc'h
{c:Pap | monotonic(c)}

My a

o =09

¢‘(Udom(c)) = |Jdom(c)
Ve:A F(e): A

Va: Mab: Map.a C b= F(a) T F(b)
pmonotonic 4 (F') A monotype 4(f)
€ed. Yv.d =dom(c(v))

B.2 Lifted Set-Transformers

Here we list the definitions of statements and auxilliary operators described

in Chapter 4.

Skip = X A.Skipy,
Abort = )\ A.Aborty
Magic = )\ A.Magicy,
Chaos = A A.Chaosy 4
{P} = XA {{s:A]| P(s)}},
(@Q— = M. ({s:4] Q(9)}) 4~
(@ = MA[{s: 4] Q(s)},
[P, Q] = )\A.T[{S:A| P(s)}, {s:A‘ Q(s)}H 4
(F) = MA.(Az:A.F(z)),
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allb
if g then a else b fi
while ¢ do ¢ od

D2 D2 | D | D P | D2 | 2 I P 1 P DI | P ( P

A A.
NA.
NA.

0o=41.R(i,0)

0:=41i.R(i,0)

a(A); b(A)

AA.a(A)Ub(A)

ANA. a(A)T1b(A)

NA.if {z:A| g(z)} then a(A) else b(A) fi
A A.while {z:A | g(z)} do ¢(A) od
ANA.reg N. ¢(A_. N, A)er

AS.rex:[,S; 3. TerNI(z)c(z,A\_. N)
AA.con z. ¢(z, A)

ANA.var z. ¢(z, A)

AA.cong z:T. ¢z, A)

AMNA.varg z:T. ¢(z, A)

B.3 Typing-Lifted Set-Transformers

Here we list the definitions of statements and auxilliary operators described

in Chapter 6.

IR D 1P PR PR )

1

I

11

1

AT.Skipg,
AT.Aborts_

A 7. Magicg_
AT.Chaoss, s,
AT. Choose(w)S;

A A{{s:S, | P(s)}}s

AT ({s:8: | Q(s)Dg,—

AT [{s:8- | Q(s)}]s,

)\T.T[{SIST‘ P(s)}, {SIST‘ Q(s)}]sT
ATov:[{s:S; | P(s)}, {s:S; | Q(s)}]&
AT AA2:8; F(2)) s

AT.v =5, (As:S;. E(s))

AT. <)WS>ST

AT.0=gs_1.R(i,0)

133



0:=1i.R(i,0) = A7T.0:=g_1i.R(i,0)
asb = A71.a(7);0(7)
aldb = Ar.a(r)Ub(7)
allb = Ar.a(r)MNb(7)
ifgthenaelsebfi = A7.if{z:S, | g(z)}then a(7) else b(r) fi
while g do c od = A7.while {z:S, | g(z)} do ¢(7) od
re N.c(N)er = At.res. N. ¢c(A\_.N,7)er
rez:T,N JI(z). c(z,N)er = Ar.res, z:T,N J1(z). c(z,A\_. N)er
con z. c(z) = Ar.con z. c(z,T)
var z. c(z) = Art.varz. c(z,T)
conz:T.c(z) = Ar.cong. z:T. c(z,7)
varz:T. ¢(z) = Ar.vars. z:T. c(z,7)

begin v : T. ¢ end AT.beging v. ¢(r[T/v]) end

AT. beging. dom(D;. c(r EH D) end

[

begin D. ¢ end

proc P(D)int=1Iimp = Bin C(P) =
let P = A\ T a.PARAM(B, Tp.7,1p.q, Fp.)
in\T.({\_T Cr,,, BY; C(P(T))(T)

rec P(D) int=Ivar=v:V,R(v)imp=B(v,P)inC(P)=
letP=)\T a. PARAM(BI(T),TD,T,]ID’a,IFD’a)
inAT. ({\_.T Co,, BU(T)}: C(P(T))(T)
where B'(T) =
reP. con v: V.
{0 {Xs.R(v, )11 Cnyr PYs
B(U,)\a.PARAM(P,TD,T,]ID7a,FD7a))
er
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Appendix C

Theorems

C.1 Set Transformers

Here we list typing and refinement-monotonicity theorems for the set trans-
former statements described in Chapters 3 and 5.

C.1.1 Monotonic Set Transformers

Skip, : My {P}, : My HP, Q) : Ma
Abort, : My (Q),— : My P, Q) : Ma
Magic, : My [, @ Ma w:[P, Qly + My
Chaosy, : My (Fy, : MA,BT {R}, : My

Choose(w),, : My vi=4 F /\/lA,BT [R], : My
(M),p : Map

fFor E;F: B — X
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a:Mpec b:Myg a: My b: My

asb: My if gthen a else b fi : M4
CL:MAyB b:MAyB CLZMA,B bIMA,B
a,l_lb:MA,B aﬂb:MA,B
O:]P)MA’B O:]P)MA,B
I_IAC : MA,B |_|AC : MA,B
Va.c(z): My Va.c(z): My
con z. ¢(x) : My var z. ¢(z) : My
Ve:T.c(z): Map Ve:T.c(z): Map
cong z:T. ¢(z) : Mup varg z: 1. ¢(z) : Map
Vz.a(z): Map
storep 2. a(z): Mup rea N. F(N)er: My
CiMA
while g do ¢ od : M4 reqa z:T,N JI(z). c(x,N)er: My,
c: Mg c: Mg
begin, v. c end : M, begin, . c end : M4
CiMB

Parama(c, I, F) : My

C.1.2 Refinement Monotonicity

PCP PNQCQ
[P, QA C AP, QA

PCP P£0=Q CQ
[P, QIA,B C [P, QA B

Vi:P.{o:Q" i dsub v = odsub v} C
PCP {0:Q | idsubv = odsub v}
v:[P, QA,BC v:[P, QA B

Given ¢ : Mp ¢ and ¢, d : My p, we have:
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)
I

b c¢cC d

;¢ C byd

=

Given a, b, c,d : M4, we have:

aC b cCd
if g then a else c fi C if g then b else d fi

Given a, b, c,d : M4 p, we have:

If for any = we know a(z), b(z) : My x, then:

Viz.a(z) C b(x) Viz.a(z) C b(x)
C

)
con z. a(z) C con z. b(z) varz. a(z) C var z. b(z)

Given a(z) : My x for any z in T, we have:

Vz:T.a(z) C b(z) Vz:T.a(z) C b(z)

cong z:T. a(x) C cong z:T. b(x) varg z:T. a(z) C vary z:T. b(x)

Given that for any s we have a(s), b(s) : Pa,p, then we know:

Vs:B.a(s) T b(s)
storep s. a(s) C storep s. b(s)

Given a, b : My, we have:

b
while g do b od

a
while g do a od

C
C

Given a(z), b(z), d(z) : M4 for any z in M 4, we have:

Ve:My. c(z) C d(z)
rea N. c(N)er C rey N. d(N)er

Ve:T.VN:My.c(z) CKN = a(z,N) C b(z,N)
rea z:T,N Jc(z). a(z,N)er C req z:T,N 3 c(z). b(z,N)er

Given ¢, d : Mp, then
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d
begin, v. d end

c
begin, v. ¢ end

c C d
begin, . c end C begin, . d end

Given ¢, d : Mg, then

d
Param,(d, I, F)

c
Param4(c, I, F)

I

C.2 Lifted Set-Transformers

Here we list typing and refinement-monotonicity theorems for the lifted set-
transformer statements described in Chapter 4. Note that we have lifted fixed
specification statements, and here we denote free specification statetments

as [P, Q]

C.2.1 Monotonic Predicate Transformers

Skip : My {P} : My [P, Q] : My
Abort : M, (Q)— : My {R} : My,
Magic : My [Q] : My [R] : My
Chaos : My (Fy @+ My
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a: My b: My
a3 b : My

a: My b: My
if gthen a else b fi : M 4

a: My b: My
alb: My

a: My b: My
allb: My

Vi.c(z): My
con z. c¢(z) : My

Vi.ce(r): My
var z. c¢(z) : My

Vo:T.c(z): My
con z:T. c(z): My

Vi:T.c(z): My
var z:T. c¢(z) : My

c: My
while g do ¢ od : M4

re N. F(N)er: My

rex:T,N JI(z). c(x,N)er: My

C.2.2 Refinement Monotonicity

Vs:A. P(s) = P'(s) Vs:A. Q'(s)= Q(s)
[P, @] Ca [P, @]

Given a, b, ¢, d : M 4, we have:

alsb cCypd a Eab

CEAd
ayc E4 bsd

if gthen a else cfi T4 if g then belse d fi

alab cCyd a T b
ale T4 bUd

CEAd
allecCy bnd

Given a(z), b(z) : My for any z, we have:

Vz.a(z) Ca b(z) Vi.a(z) Ca b(z)
con z. a(z) C4 con z. b(z) varz. a(z) T4 var z. b(z)

Given a(z) : My for any z in T, we have:

Ve:T.a(z) T4 b(x) Ve:T.a(z) T4 b(x)

conz:T. a(x) £ conz:T. b(z) varz:T. a(z) T4 varz:T. b(x)
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Given a, b : M 4, we have:

a EA b
while ¢ do @ od £ 4 while g do b od

Given a(N),b(N),d(N) : M4 for any N in My, we have:

AN : My e(N) T4 d(N)
re N.c(N)er C4 re N. d(N)er

Nz:T N: My.c(z) g N = a(z,N) T4 b(z,N)
rez:T,N Jc(z). a(z,N)er Cp rez:T,N I c(z). b(z,N)er

C.3 Typing-Lifted Set-Transformers

Here we list typing and refinement-monotonicity theorems for the lifted set-
transformer statements described in Chapter 6.

C.3.1 Monotonic Predicate Transformers

Skip : M, P}y : M, P, Q : M,
Abort : M., (Q)— : M, w: [P, Q] M.,
Magic : M. [Q] : M, {R} : M,
Chaos : M., (F) M, [R] M,

Choose(w) M., v:=F M.,
(M) : M,
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a: M, b: M, a: M, b: M,
a3 b : M, if gthen aelse b fi : M.,
a: M, b: M, a:M; b: M,
alb: M, allb: M,
Vz.c(z): M, Vz.c(z): M,
con z. c(z) : M, var z. ¢(z) : M,
Vae:T.c(z): M, Ve:T.c(z): M,
con z:T. ¢c(z): M, varz:T. c(z) : M,
c: M.,
while g do ¢ od: M, re N. F(N)er: M,
c: Mg
PARAM(¢,S,I,F): M., rez:T,N J1(z). c(z,N)er: M,
¢ Mot c: M. mp
begin v: T. cend: M, begin D. ¢ end : M,

B:Mr,, (AP.P- M= C(P): M)
proc P(D)int=Iimp=BinC(P): M

(NP.P .- M = C(P): My)
rec P(D)int=1Ivar=v: V, R(v)imp=B(v,P)in C(P): My

C.3.2 Refinement Monotonicity

Vs:8,.P(s)= P'(s) Js:8.P(s)=Vs:85.Q'(s) = Q(s)
P, Q] C, [P, Q]
Vi:S,. P(i) =
Vs:S:. P(s) = P'(s) (Vo :S8;.idsubv = odsubv A Q'(0) = Q(0))
v:[P, Q] C, v:[P, Q]

Given a, ¢, d : M, we have:
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6 C, b cC,d
ayc &, byd
Given a, b, c,d : M, we have:
a E- b cC;d
if gthen a else c fi T, if g then b else d fi

Given a, b, ¢, d : M, we have:

6C b cCod al, b cC, d
aldc C, bud allcC, brid

If for any = we know a(z), b(z) : M, then:

Vz.a(r) &, b(z) Vz.a(z) T, b(z)
con z. a(z) C, con z. b(z) varz. a(z) C, var z. b(z)

Given a(z) : M, for any z in T, we have:

Ve:T.a(z) T, b(z) Ve:T.a(z) T, b(x)
conz:T. a(z) C; conz:T. b(z) varz:T. a(z) C, varz:T. b(x)

Given a, b : M, we have:

a T, b
while ¢ do @ od C, while g do b od

Given a(N),b(N),d(N): M, for any N in M, we have:

AN : M. ¢(N)C, d(N)
re N.c(N)er C, re N. d(N)er

ANz: T N: M.,.c(z) &, N =a(z,N) C, b(z,N)
rex:T,N Jc(z). a(z,N)er T, rez: T, N J ¢(z). b(z,N)er

Given ¢, d : M7/, then
¢ Crirye) d

begin v : T. cend C, begin v: 7. d end

Given ¢, d : M gp, then
c ETEHD d
begin D. c end C, begin D. d end

See Chapter 6 for the listing and discussion of the refinement-monotonicity
theorems for procedures and recursive procedures.
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Appendix D

Final Code for the Case Study

This appendix contains the final code for the case study implementation of
propositional tautology checking given in Chapter 8. We first present the
sugared version, and then the explicit version as appears in Isabelle/ZF.

D.1 Final Code: Sugared

We rely on the following assumptions in the proof of the refinement:
e the external typing is well-typed, i.e. 7(r) =B and 7(p) = prop

e the variable names used in the program are in fact variable names, i.e.
{a7 b7 67 l7n7p7r7t7U7I7y} g V

e the variable names are distinct, specifically:

— distinct({p, r})
— distinct({a, b, t,v,z,y})
— distinet({l, n, t})

— distinct({a, b, p})
distinct({e, ¢, p})

The collected refinement is as follows:

r:true, =V V:PV.[p]v]
L

T
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rec Build(value p : prop, result ¢ : rontree)
int =
t : [true, BUILD(p,tree_of _ntree(t))]
var =V : prop, p subprop V'
imp =
rec Join(value a : rontree, value b : rontree, result ¢ : rontree)
int =
t: [true,
JOIN (tree_of_ntree(a), tree_of_ntree(b), tree_of_ntree(t))]
var = T : tree X tree,
(tree_of _ntree(a), tree_of_ntree(b)) (subtree x x subtree) T
imp =
proc JoinLeaf (value [ : rontree, value n : rontree, result ¢ : rontree)
int =
t : [is_nleaf(l),
JOIN (tree_of_ntree(l), tree_of_ntree(n), tree_of_ntree(t))]

imp =
if (I = (true, NLeaf)) then ¢ := nelse ¢ :=[fi
in (* end of JoinLeaf’s implementation *)

proc JoinNode(value a : rontree, value b : rontree, result ¢ : rontree)
int =
t: [v = (tree_of_ntree(a), tree_of_ntree(b)) A is_nnode(a) A is_.nnode(b),
JOIN (tree_of_ntree(a), tree_of_ntree(b), tree_of_ntree(t))

imp =
if (a = b) then
t:=a
else

begin v : V; z,y : rontree.

if (nvar(a) = nvar(b)) then
v := NNodeV(snd(a));
Join(nleft(a), nleft(d), z);
Join(nright(a), nright(d), y)

else if (nvar(a) < nvar(b)) then
v := NNodeV(snd(b));
Join(a,nleft(b), z);
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Join(a,nright(b), y)
else
v := NNodeV (snd(a));
Join(nleft(a), b, z);
Join(nright(a), b, y)
fi fi;
if (z = y) then
t:==x
else
t := (fst(z), NNode(v, snd(z), fst(z) = fst(y),snd(y)))
fi
end
fi
in (* end of JoinNode’s implementation *)
if (is_nleaf(a)) then
JoinLeaf (a, b, t)
else if (is_nleaf(b)) then
JoinLeaf (b, a,t)
else
JoinNode(a, b, t)
fifi
in (* end of Join’s implementation *)
if (is_Var(p)) then
t := (true, NNode(VarV(p), NLeaf, false, NLeaf)))
else if (is_Not(p)) then
begin e : rontree.
Build(NotA(p), e);
t := neg_ntree(e)
end
else

begin a, b : rontree.

145



Build(AndL(p), a);
Build(AndR(p), b);
Join(a, b, t)
end
fifi
in (* end of Build’s implementation *)

begin ¢ : rontree.

Build(p, t);
r:= (t = (true, NLeaf))
end

D.2 Final Code: Isabelle/ZF

This is the final code for the case study refinement as it appears in Is-
abelle/ZF. Tt is unaltered except as concerns spacing,.

[l B(r) = bool; r : VId; B(p) = prop; p : VId; p "= r;
t "=y;t "=%x;t "=v; b =v; b =y; b "=x; a"=v;

a“=y;a’"=x;x "=y; v =y; v =x;y:VId; x : VId;
v ViId; t "= n; t "=1; n "= 1; n : VId; 1 : VId; b "= a;
b "™=t; b "=p; b VId; a "= t; a "= p; a : VId; e "= t;
e "=p; e VId; t "=r; t "= p; t : VId

] ==>

FSPEC({r}, %s. True,
%s. s‘r = if (ALL V:Pow(variable). mprop(s‘p,V), 1, 0))

REFS (B)

REC Build([Val(p, prop), Res(t, rontree)l)

INT === FSPEC({t}, %s. True, %s. BUILD(s‘p, tree_of_ntree(s‘t)))
VAR === va:prop, %s. s‘p subprop v

REC Join([Val(a,rontree), Val(b,rontree), Res(t,rontree)])
INT ===
FSPEC({t}, %s. True,
%s. JOIN(tree_of_ntree(s‘a), tree_of_ntree(s‘b),
tree_of_ntree(s‘t)))
VAR === va:tree * tree,
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%s. <<tree_of_ntree(s‘a), tree_of_ntree(s‘b)>, v> :
subtree_rel ** subtree_rel
IMP ===
PROC JoinLeaf([Val(l,rontree), Val(n,rontree), Res(t,rontree)])
INT ===
FSPEC({t}, %s. is_ntreeleaf(s‘l),
%s. JOIN(tree_of_ntree(s‘l), tree_of_ntree(s‘n),
tree_of_ntree(s‘t)))

IMP ===
IF (%s. s‘l = <1, NTreelLeaf>) THEN
t := (Y%s. s‘n)
ELSE
t := (%s. s°1)
FI
IN

PROC JoinNode([Val(a,rontree), Val(b,rontree), Res(t,rontree)])
INT ===
FSPEC({t}, %s. va = <tree_of_ntree(s‘a), tree_of_ntree(s‘b)> &
is_ntreenode(s‘a) & is_ntreenode(s‘b),
%s. JOIN(tree_of_ntree(s‘a), tree_of_ntree(s‘b),
tree_of _ntree(s‘t)))

IMP ===
IF (%s. s‘a = s‘b) THEN
t := (%s. s‘a)
ELSE

MBEGIN {<v, variable>, <x, rontree>, <y, rontree>}.
IF (%s. ntree_var(s‘a) = ntree_var(s‘b)) THEN
v := (%s. NTreeNode_var(snd(s‘a))) SEQ
Join([Arg(%s. ntree_left(s‘a)), Arg(%s. ntree_left(s‘b)),
Arg(%s. x)1) SEQ
Join([Arg(%s. ntree_right(s‘a)), Arg(’%s. ntree_right(s‘b)),
Arg(%s. y)1)
ELSE IF (%s. ntree_var(s‘a) < ntree_var(s‘b)) THEN
v := (%s. NTreeNode_var(snd(s‘b))) SEQ
Join([Arg(%s. s‘a), Arg(%s. ntree_left(s‘b)),
Arg(%s. x)1) SEQ
Join([Arg(%s. s‘a), Arg(%s. ntree_right(s‘b)),
Arg(%s. y)1)
ELSE
v := (%s. NTreeNode_var(snd(s‘a))) SEQ
Join([Arg(%s. ntree_left(s‘a)), Arg(%s. s‘b),
Arg(%s. x)1) SEQ
Join([Arg(%s. ntree_right(s‘a)), Arg(ls. s‘b),

147



Arg(hs. Y1)
FI FI SEQ
IF (%s. s‘x = s‘y) THEN
t := (%s. s‘x)
ELSE
t := (%s. <fst(s‘x),
NTreeNode(s‘v, snd(s‘x),
fst(s‘x) eq fst(s‘y), snd(s‘y))>)
FI
END
FI
IN
IF (%s. is_ntreeleaf(s‘a)) THEN
JoinLeaf ([Arg(/s. s‘a), Arg(%s. s‘b), Arg(ls. t)1)
ELSE IF (%s. is_ntreeleaf(s‘b)) THEN
JoinLeaf ([Arg(/s. s‘b), Arg(%s. s‘a), Arg(ls. t)1)
ELSE
JoinNode ([Arg(/s. s‘a), Arg(%s. s‘b), Arg(lhs. t)1)
FI FI
IN
IF (%s. is_VAR(s‘p)) THEN
t := (%s. <1, NTreeNode(VAR_var(s‘p), NTreelLeaf, O, NTreeLeaf)>)
ELSE IF (%s. is_NOT(s‘p)) THEN
MBEGIN {<e, rontree>}.
Build([Arg(%s. NOT_arg(s‘p)), Arg(%s. e)]) SEQ
t := (%s. neg_ntree(s‘e))
END
ELSE
MBEGIN {<a, rontree>, <b, rontree>}.
Build([Arg(%s. AND_left(s‘p)), Arg(%s. a)l) SEQ
Build([Arg(%s. AND_right(s‘p)), Arg(%s. b)]1) SEQ
Join([Arg(%s. s‘a), Arg(ls. s‘b), Arg(%s. t)1)
END
FI FI
IN
MBEGIN {<t, rontree>}.
Build([Arg(%s. s‘p), Arg(%s. t)]) SEQ
r := (%s. if(s‘t = <1, NTreeLeaf>, 1, 0))
END
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